

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

WP[1]

Name of the presentation

12M Annual General Meeting

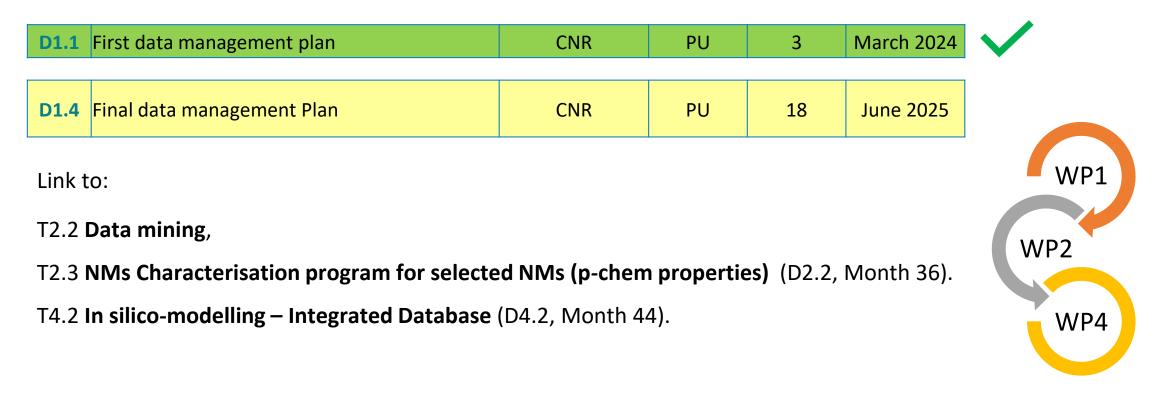
Turin - Italy 29-30 January 2025

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414

Tasks and Gantt

WP1				Ye	ar 1			Year 2			Year 3			Yea	ar 4			
Task	Title	Leader	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.1	Data generation and management plan for impact assessment	CNR	D 1.1					D 1.4										
1.2	Addressing case studies specific goal and scope	CNR						D 1.2										
1.3	Dedicated Algorithms and digital Decision Support Toolbox implementation for NMs	PRJ								D 1.3				MS 1				

D1.2 Report includi	t on the goal and scope of addressed case studies, ing KDFs and KPIs definition	PRJ	SEN	18	June 2025
D1.4 Final d	lata management Plan	CNR	PU	18	June 2025



Task 1.1

Data generation and management plan for impact assessment

Preliminary DMP encompasses a significant part of the life cycle of the data produced within INTEGRANO. (D1.1, Month 3) Expected final DMP at Month 18 (D1.4)

Task 1.2 Addressing case studies specific goal and scope CS leaders

CS N. 1 (CNR-ISSMC)

	NMs	Synthesis/Extraction	Incorporation technology	Product/Functionality
1.1	Egyptian Blue based materials. Ag@biopolymer. (Bio)SiO ₂ @TiO _{2.} (Bio)SiO ₂ @Essential Oils.	Solid state synthesis Sol-gel Sol-gel Heterocoagulation	Spray-coating	Antimicrobial textile
1.2	CuO/ZnO	In-situ sonochemical synthes		

LINKED PROJECTS: ASINA, PROTECT, SECURECOAT

CS N. 2 (CNR-ISMN)

NMs	Synthesis/Extraction	Incorporation technology	Product / Functionality
Perovskite-type Ce-doped strontium ferrate (CSF) - Silica Thermocatalysts. (Bio)SiO ₂ @TiO ₂ Photocatalyst.	Citrate-assisted Solution Combustion Synthesis (CNR-ISMN) Sol-gel (CENTI)	Dip-coating (ISMN-B4C) Ultrasound (BIU) Spray Coating (CENTI)	Nano-enabled water membranes based on SiC, in flat or scraps form (B4C)
			Abatement of contaminants of emerging concern and bacteria

Task 1.2 Addressing case studies specific goal and scope CS leaders

CS N. 3 (CNR-IPCB e SCITEC)

NMs	Synthesis/Extraction	Incorporation technology	Product / Functionality
Bio-SiO ₂ –F (Functionalised bio-silica) (SCITEC)	Extraction from rice-husk Extraction from waste material (CENTI)	Feeding (PU Bio-precursor + Bio-SiO ₂) Mixing Moulding (IPCB)	Nano-enabled reinforced polyurethane foams Mechanical properties Low thermal conductivity

CS N. 4 (CNR-ISAC)

LINKED PROJECTS: REINVENT, BIOMAT

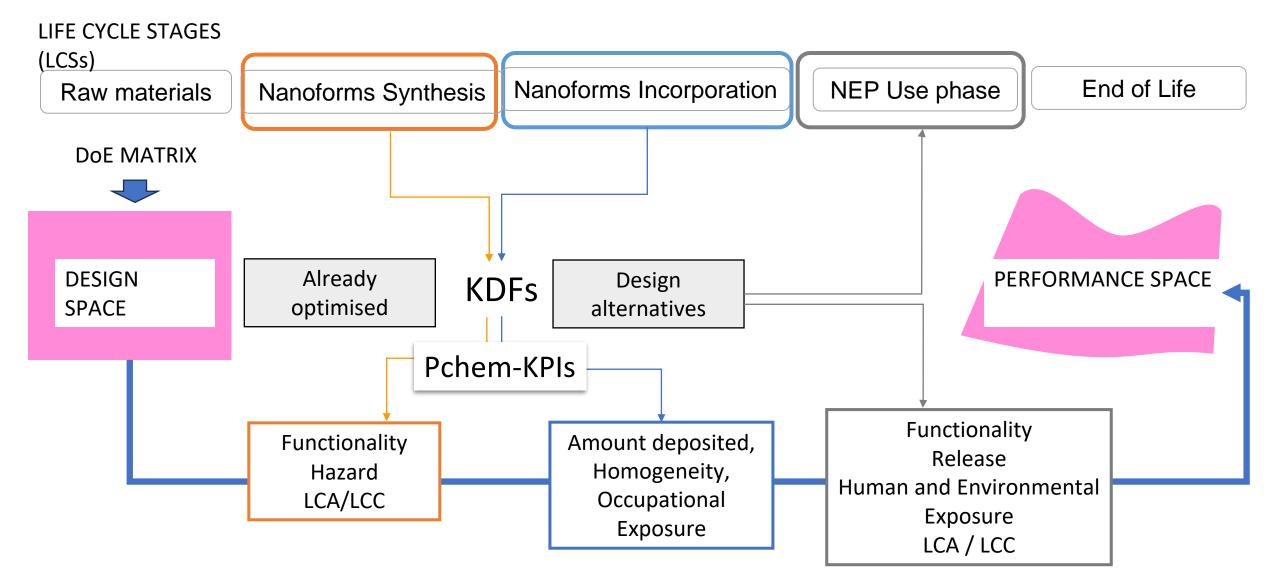
NMs	Synthesis/Extraction	Incorporation technology	Product / Functionality
Ag@biopolymer.	Sol-gel	Electrospinning (Ag nanosol + Cellulose Acetate (CA) blend)	Electrospun nanofibers. Antimicrobial properties Air filtration efficiency, Quality Factor

. .

Task 1.2 Addressing case studies specific goal and scope CS leaders

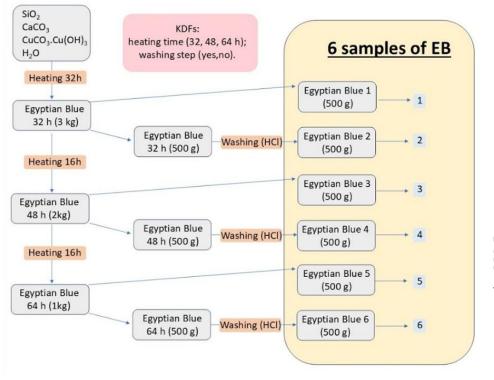
CS N. 5 (BIU)

NMs	Synthesis/Incorporation	Product / Functionality
C-dots from Olive/Salvia/Aloe Vera/Thyme/Rosemary leaves (BIU)	Hydrothermal synthesis Sonication coating	Shelf-life extension of food packaging material (polyethylene film/paper)


CS N. 6 (ROV)

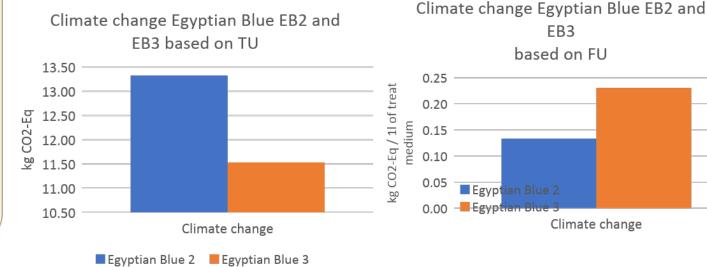
NMs	Synthesis/Extraction	Incorporation technology	Product / Functionality
(Bio) $SiO_2@TiO_2 NPs + activeingredients(Bio) SiO_2@TiO_2 NPs + activeingredients in micropelletTiO_2 NPs + active ingredients inmicropellet$	Extraction of SiO ₂ from rice-husk (CENTI) Micropelletisation (VERL)	Cosmetic formulation (ROV, VERL)	UV protection cream UV-shielding SPF

Task 1.2 Addressing case studies specific goal and scope CS leaders INTEGRANO



Dedicated Algorithms and digital Decision Support Toolbox implementation for NMs

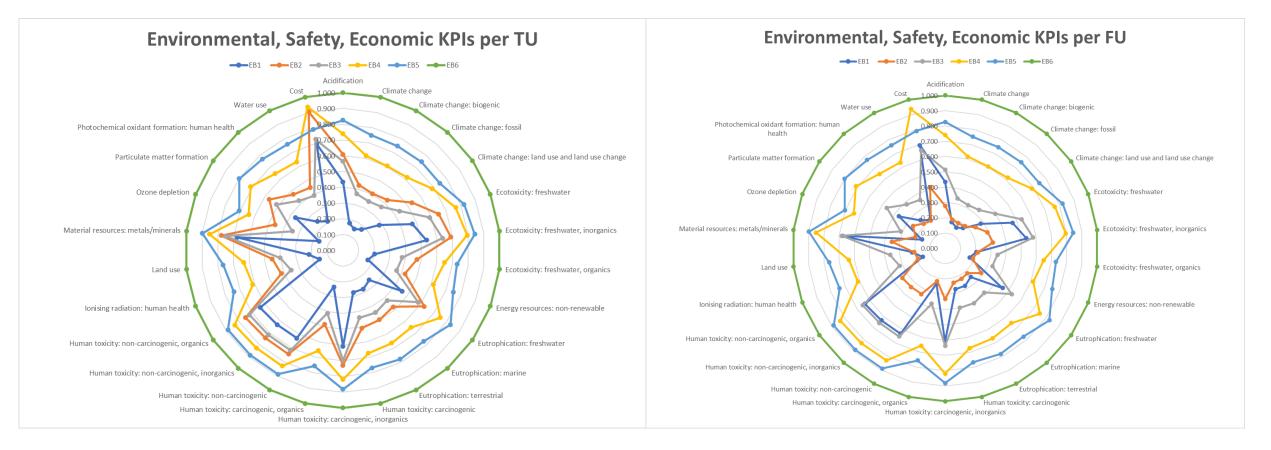
D1.3 Digital Decision Support Toolbox for quantitative based integrated impact assessment towards SSbD solutions	PRJ	SEN	24	December 2025
--	-----	-----	----	---------------


First implementation of INTEGRANO multi-optimisation

Task 1.3

MBC (mg/ml)	-	-	-	-	-	
	EB1	EB2	EB3	EB4	EB5	EB6
S. aureus	>10	>10	>10	>10	>10	>10
E. coli	>10	>10	>10	>10	>10	>10

MIC (mg/ml)					-	
	EB1	EB2	EB3	EB4	EB5	EB6
S. aureus	>10	>10	>10	>10	>10	>10
E. coli	>10	5	10	>10	>10	>10



INTEGRANO

Task 1.3 Dedicated Algorithms and digital Decision Support Toolbox implementation for NMs: Multi-performance assessment

INTEGRANO Dedicated Algorithms and digital Decision Support Toolbox implementation for NMs: the stakeholders perspective

Task 1.3

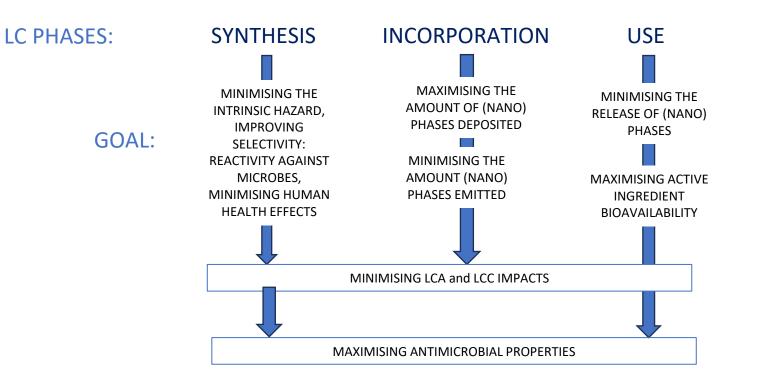
PRJ

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

Case Study 1

Antimicrobial (medical) textile

	NMs	Synthesis/Extraction	Incorporation technology	Product/Functionality
1.1	Egyptian Blue based materials. Ag@biopolymer. (Bio)SiO ₂ @TiO _{2.} (Bio)SiO ₂ @Essential Oils.	Solid state synthesis Sol-gel Sol-gel Heterocoagulation	Spray-coating	Antimicrobial textile
1.2	CuO/ZnO	In-situ sonochemical synthes		

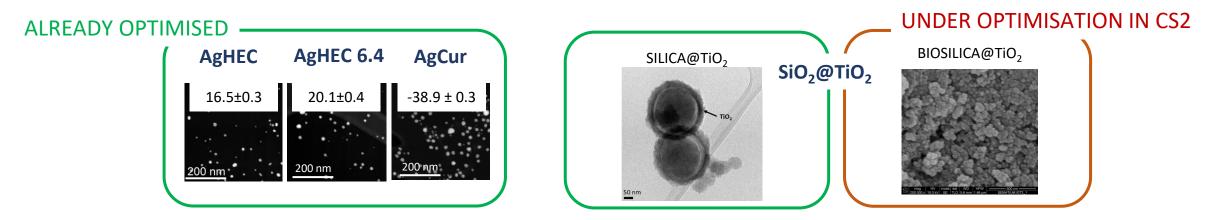




CS1.1 + CS1.2 SCOPE, GOAL

CNR-ISSMC

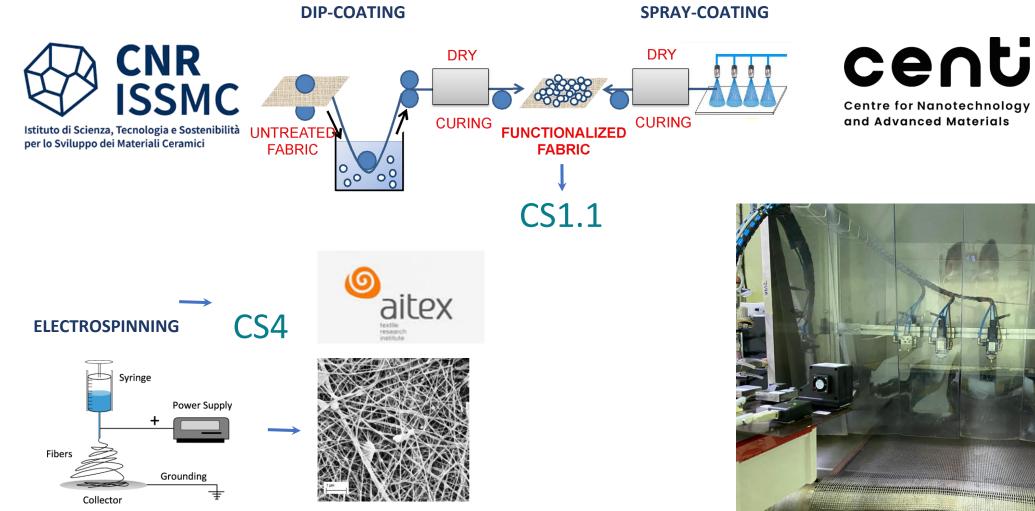
SCOPE: PRODUCTION OF MEDICAL TEXTILE COATED BY ANTIMICROBIAL NANOFORMS





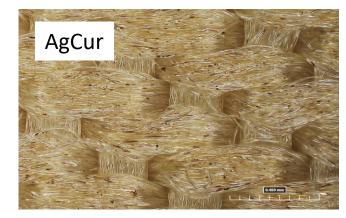
CNR-ISSMC

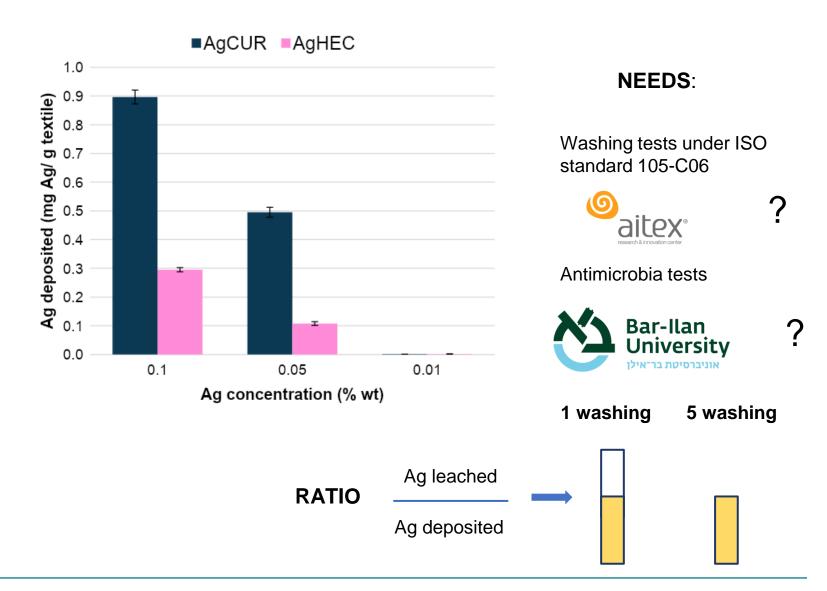
EO (Essential Oils)@SiO₂



CNR-ISSMC

12M GA 29-30 January 2025, Turin

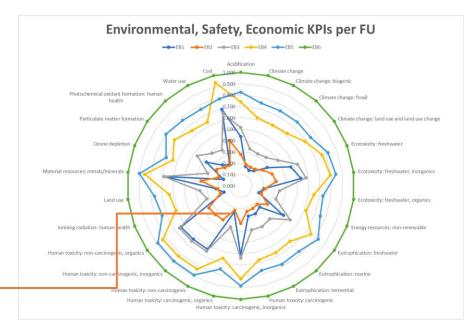




Medical grade PES, 150 g/m² (AITEX)

12M GA 29-30 January 2025, Turin

INTEGRANO


CS1.1 MICRO -EGYPTIAN BLUE

CNR-ISSMC

MICRO SCALE EGYPTIAN BLUE

#	Sample name	Sample legend
1	12A	Second firing
2	I2B	Second firing + washing + annealing (900 °C for 4 hours)
3	I3A	Third firing
4	I3B	Third firing + washing + annealing (900 °C for 4 hours)
5	14A	Fourth firing
6	I4B	Fourth firing + washing + annealing (900 °C for 4 hours)

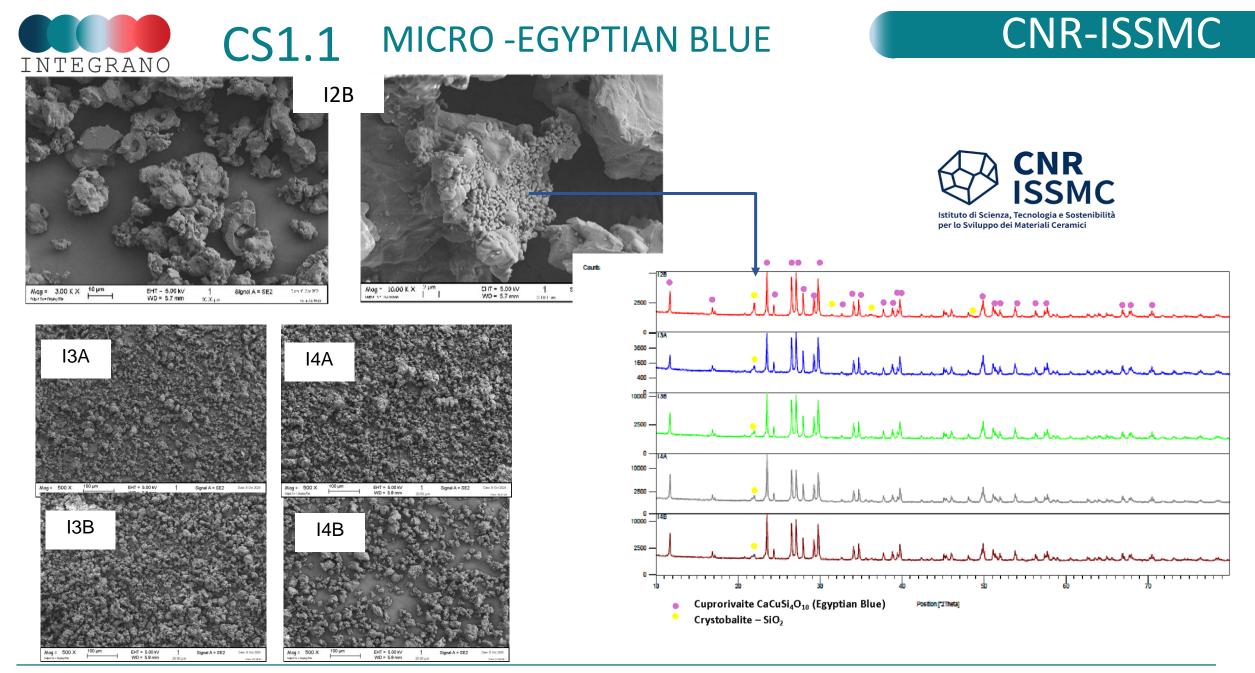
CASE STUDY 4.1

ANALYSIS REPORT

20/01/2025

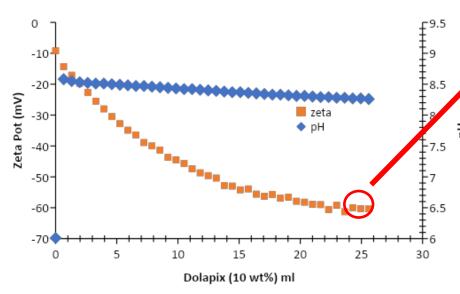
MICRO SCALE EGYPTIAN

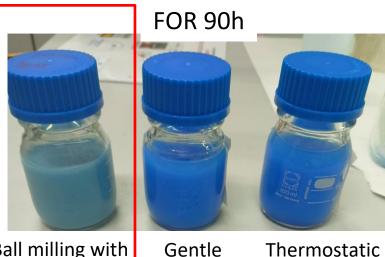
BLUE MULTIOPTIMISATION


REPORT ON MICRO SCALE EGYPTIAN BLUE MULTIOPTIMISATION

I2B SAMPLE THAT DISPLAYED MINIMAL IMPACTS IN ALMOST ALL IMPACT CATEGORIES

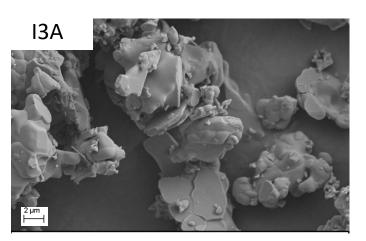
Funded by the European Union



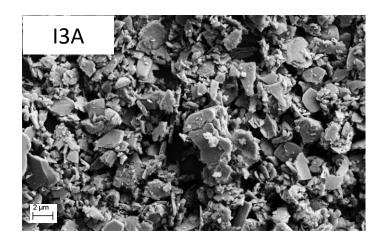

CS1.1 NANO-EGYPTIAN BLUE

CNR-ISSMC

DISPERSABILITY OF MICRO EB

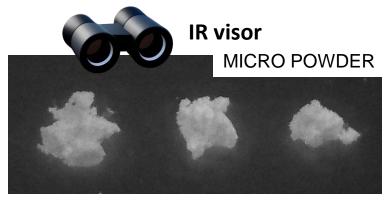

Dispersant: I EB: 2:1 (wt%			
	Amount (g)		
EB (g)	2,5		
Dolapix CA (10%)	50		
Water	48,5		

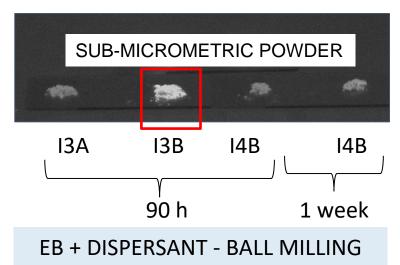
milling


Ball milling with ZrO₂ MEDIA

Thermostatic bath (50°C)

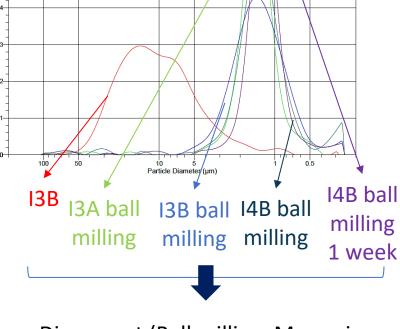
EXFOLIATION: FROM MICRO TO NANO (SUB-MICRON)






CS1.1 NANO-EGYPTIAN BLUE

μ-I3A **μ-**13B **μ**-I4B


SIZE COMPARISON AFTER BM:

I3A vs I3B 13B vs 14B I4B (BM 90h) vs I4B (BM 1 week)

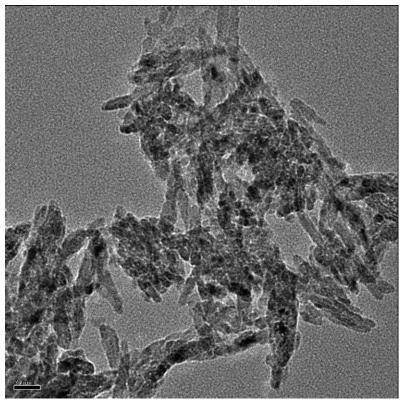
Funded by

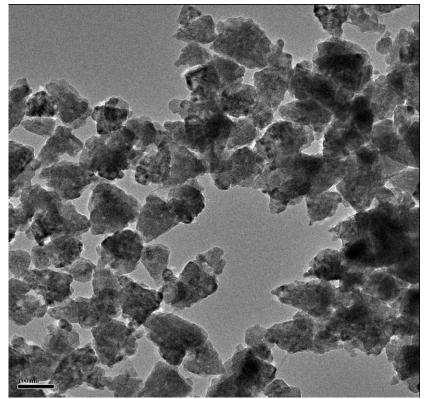
the European Union

Dispersant (Ball milling, Mean size 1.5 μ m, with a significant submicrometric fraction

Work planned for the NEXT 6 MONTHS

- Optimisation of nano-Ag dip-coating process, antimicrobial, washing fastness and skin irritation tests: KDF: Ag-nanosol concentration; KPI: Ag loading, washing fastness, antibacterial properties.
- Optimisation of EB exfoliation test: KDF: exfoliation process parameters (time, milling); KPI: luminescence.
- Optimisation of nano-EB dip-coating process: KDF EB concentration; KPI: EB loading, washing fastness, luminescence, antibacterial properties.
- Optimisation of essential oil (EO) incorporation on Bio-SiO₂: KDF EO/Bio-SiO₂ concentration; KPI: adsorption (loading) and desorption (release active ingredient); antibacterial properties.



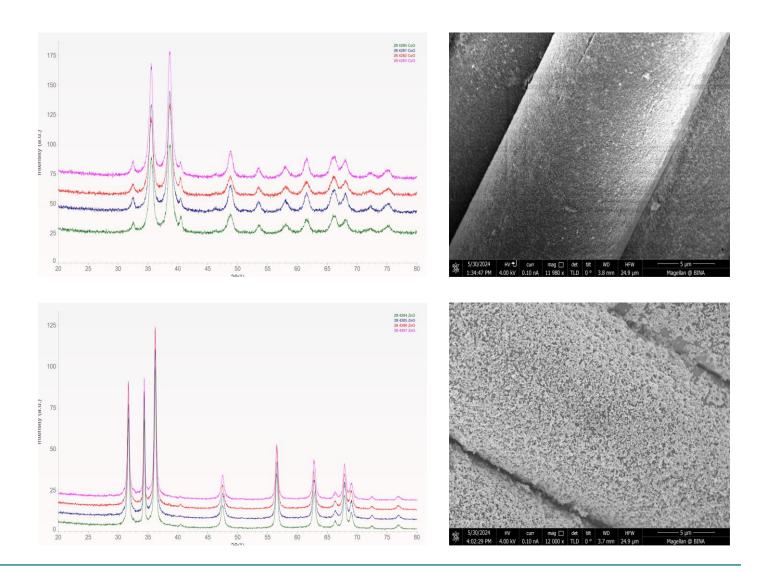

CuO

Length: 52±13 nm; Width: 8±3 nm

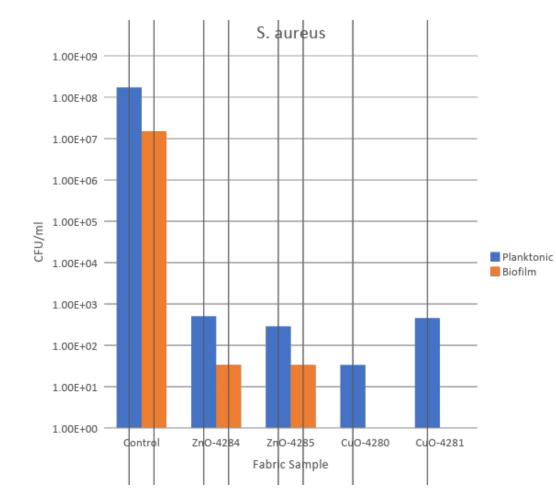
ZnO

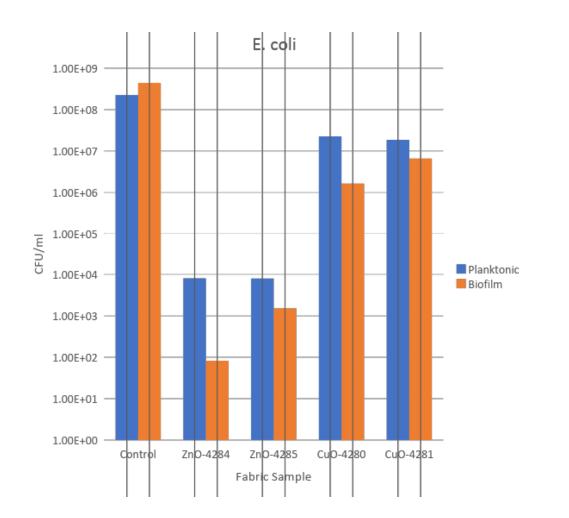
Size: 90±18 nm

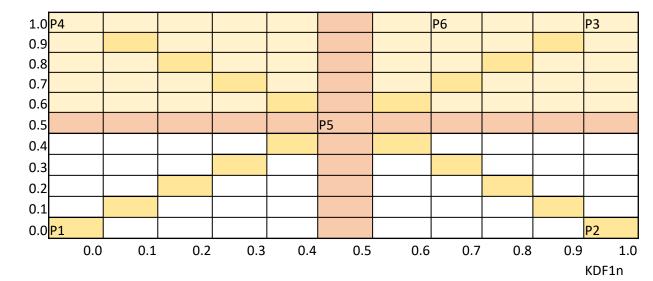
ZnO


12M GA 29-30 January 2025, Turin

Mix


- Grain size and morphology (TEM)
- Phase composition (XRD)
- Coating homogeneity (SEM)
- Me⁺² quantity on the fabric, wt% (ICP)
- MeO quantity on the fabric, wt% (ICP)
- Leaching





DoE

	Precursor concentration	Reaction time			
	KDF1	KDF2		KDF1n	KDF2n
P1	0.0025	30.0	P1	0	0
P2	0.0400	30.0	P2	1	0
Р3	0.0400	60.0	Р3	1	1
Р4	0.0025	60.0	Р4	0	1
Р5	0.0213	45.0	Р5	0.5	0.5
P6	0.0288	60.0	P6	0.7	1

Precursor, M (g/mol)		Concentratio n, M	Weight, g (X)	Water volume, ml	Temp., °C	Sonic. power (Hischl er), %	Reaction time, min	Batch number
Cotton	+							
Zn(Ac) ₂ *2H ₂ O	P1 (P1zc)	0.0025	0.1921	350	20-25	50	30	430
	P2 (P2zc)	0.04	3.0731	350	20-25	50	30	431
	P3 (P3zc)	0.04	3.0731	350	20-25	50	60	431
	P4 (P4zc)	0.0025	0.1921	350	20-25	50	60	431
	P5 (P5zc ₁)	0.0213	1.6364	350	20-25	50	45	431
	P5 (P5zc ₂)	0.0213	1.6364	350	20-25	50	45	431
	P5 (P5zc ₃)	0.0213	1.6364	350	20-25	50	45	431
	P6 (P6zc)	0.0288	2.2127	350	20-25	50	60	431
Mix Polyester-cotton 65- 35%								
Zn(Ac) ₂ *2H ₂ O	P1 (P1zm)	0.0025	0.1921	350	20-25	50	30	431
	P2 (P2zm)	0.04	3.0731	350	20-25	50	30	431
	P3 (P3zm)	0.04	3.0731	350	20-25	50	60	431
	P4 (P4zm)	0.0025	0.1921	350	20-25	50	60	
	P5 (P5zm₁)	0.0213	1.6364	350	20-25	50	45	
	P5 (P5zm ₂)	0.0213	1.6364	350	20-25	50		
	P5 (P5zm ₃)	0.0213	1.6364	350	20-25	50		
	P6 (P6zm)	0.0288	2.2127	350	20-25	50		
Cotton	1 0 (1 0211)							102
Cu(Ac) ₂ *1H ₂ O	P1 (P1cc)	0.0025	0.1747	350	19-23	50	30	432
	P2 (P2cc)	0.04	2.7951	350	19-23	50	30	432
	P3 (P3cc)	0.04	2.7951	350	19-23	50	60	432
	P4 (P4cc)	0.0025	0.1747	350	19-23	50	60	432
	P5 (P5cc1)	0.0213	1.4884	350	19-23	50	45	432
	P5 (P5cc ₂)	0.0213	1.4884	350	19-23	50	45	433
	P5 (P5cc ₃)	0.0213	1.4884	350	19-23	50	45	433
	P6 (P6cc)	0.0288	2.0125	350	19-23	50		
Mix Polyester-cotton 65- 35%								
Cu(Ac) ₂ *1H ₂ O	P1 (P1cm)	0.0025	0.1747	350	18-22	50	30	433
	P2 (P2cm)	0.04	2.7951	350	18-22	50	30	433
	P3 (P3cm)	0.04	2.7951	350	18-22	50	60	
	P4 (P4cm)	0.0025	0.1747	350	18-22	50		
	P5 (P5cm₁)	0.0213	1.4884	350	18-22	50		
	P5 (P5cm ₂)	0.0213	1.4884	350	18-22	50		
	P5 (P5cm ₃)	0.0213	1.4884	350	18-22	50		
	P6 (P6cm)	0.0288	2.0125	350	18-22	50		

KDF2n

We have synthesized:

- ZnO nanoparticles for incorporation into cellulose acetate fibers via electrospinning (CS4, Bruno Marco);
- 2. ZnO and CuO nanoparticles for EcoTox investigations (*Maurizio Gualtieri*, UNIMIB).

Work planned for the NEXT 6 MONTHS

NF_CuO	• NP • 4280, 4282, 428	33			
Provider		BIU			DIU
Sample Details					
ample Description, Components	CuO nanoparticles				
ot Number and synthesis date	NF_CuO NP • 4280, 4282, 4283	(19/05/2024, 20/05/2024)			
otal Sample Volume /Weight submitted	4.7 g				
umber of Vials submitted	2 pcs				
mount of Sample per Vial	2.55+2.15 g	NF_	ZnO • NP • 4343, 4344	NF_Z	nO • NP • 4341, 4342
Concentrations/Weights (please include analytic method)			200		
purce	Cu(Ac),-1H ₂ O solid	Provider	BIU	Provider	BIU
pating	-	Sample Details		Sample Details	
uspension Medium/buffer	dry	Sample Description, Components	ZnO nanoparticles	Sample Description, Components	ZnO nanoparticles
		Lot Number and synthesis date	NF ZnO NP • 4343, 4344 (05/01/2025)	Lot Number and synthesis date	NF_ZnO NP • 4341, 4342 (05/01/2025)
Physical and Chemical Properties		Total Sample Volume /Weight submitted	2.65 g	Total Sample Volume /Weight submitted	4.52 g
plour	brown	Number of Vials submitted	2 pcs	Number of Vials submitted	2 pcs
max absorbance (nm)	-	Amount of Sample per Vial	2.0+0.65 g	Amount of Sample per Vial	2.25+2.27 g
н	-	Pariounc of Sample per viai		Parioune of Sample per viai	anadranat B
potential (mV)		One of the stand in the stand in the stand			
oElectric Point (IEP)	-	Concentrations/Weights (please include analytic method)		Concentrations/Weights (please include analytic method)	
article size, nm	Length: 52±13; Width: 8±3	Source	7-(4-) 211 0114	Source	7-(1-) 20 014
pre-shell/coating information	-		Zn(Ac) ₂ ·2H ₂ O solid		Zn(Ac)2-2H2O solid
EM	needle-shaped nanoparticles	Coating	-	Coating	· · · · · · · · · · · · · · · · · · ·
RD	pure copper oxide	Suspension Medium/buffer	dry	Suspension Medium/buffer	dry
Conditions for Storage and Shipment		Physical and Chemical Properties		Physical and Chemical Properties	
	store at ambient temperature	Colour	white	Colour	white
torage Conditions, Details	contact with oxidizing agents		-	λ max absorbance (nm)	
hipment Conditions	Ambient temperature	pH		pH	
ample Stability at Storage Conditions	24 months	ζ potential (mV)		ζ potential (mV)	-
pecial Instructions		IsoElectric Point (IEP)		IsoElectric Point (IEP)	
		Particle size, nm	90±18	Particle size, nm	90±18
Notes		Core-shell/coating information		Core-shell/coating information	50110
xpected Outputs / Functionalities	Antibacterial activity	TEM	leaf-shaped nanoparticles	TEM	- leaf-shaped nanoparticles
		XRD	pure zinc oxide	XRD	
		-	pure zinc oxide	XRD	pure zinc oxide
		Conditions for Storage and Shipment		Conditions for Storage and Shipment	
		Storage Conditions, Details	store at ambient temperature, do not freeze, do not heat, and avoid contact with oxidizing agents	Storage Conditions, Details	store at ambient temperature, do not freeze, do not heat, and avoid contact with oxidizing agents
		Shipment Conditions	Ambient temperature	Shipment Conditions	Ambient temperature
		Sample Stability at Storage Conditions	24 months	Sample Stability at Storage Conditions	24 months
		Special Instructions		Special Instructions	
		Notes	Note	Notes	Note
		Expected Outputs / Functionalities	Antibacterial activity	Expected Outputs / Functionalities	Antibacterial activity
10					

We have started to produce a set of textiles coated with CuO/ZnO, consisting of a total of 32 samples, based on a Design of Experiments (DoE) matrix for subsequent leaching investigations. The key decision factors (KDFs) being examined include KDF1 (precursor concentration) and KDF2 (reaction time). This study's key performance indicators (KPIs) are coating concentration and antibacterial properties.

C

Investigating the functionality, and leaching behavior of the ZnO/CuO coating.

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES ✓ DEGLI STUDI

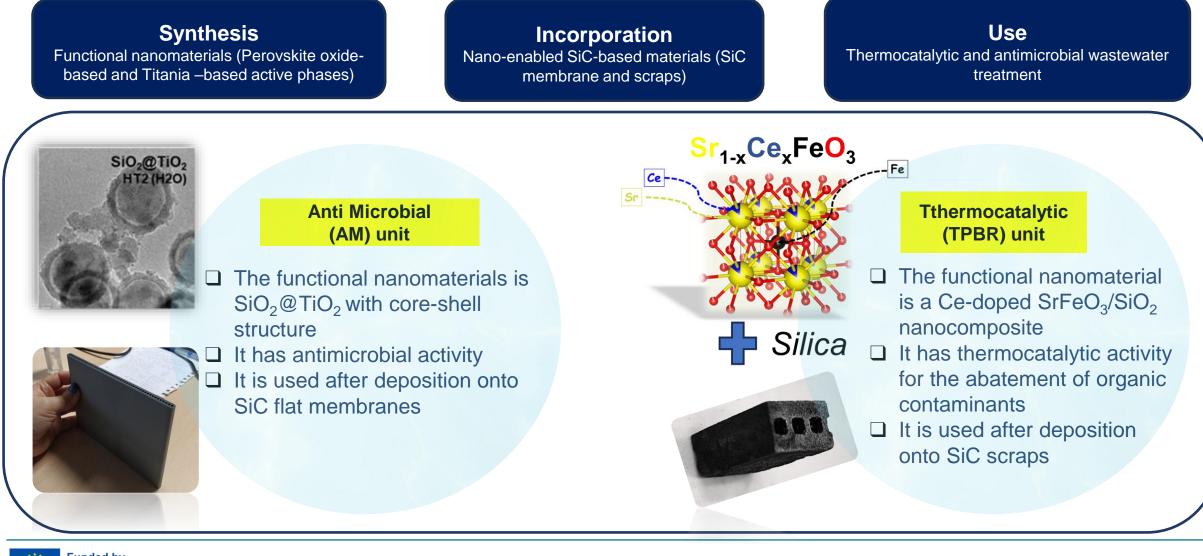
BICOCCA

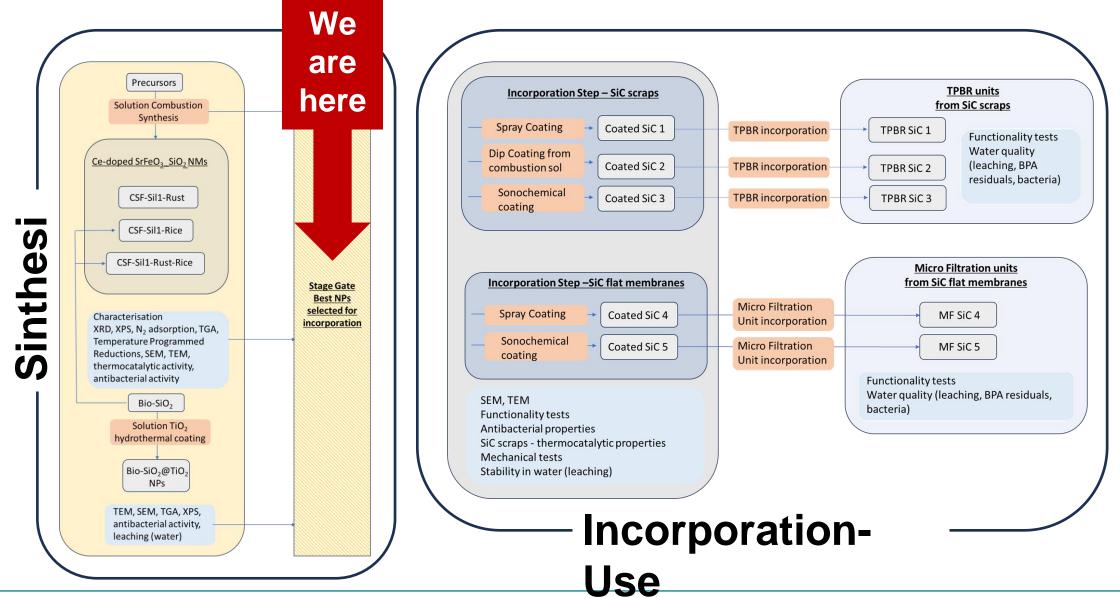
UNIVERSI7

D

MILANO

centi Centre for Nanotechnology and Advanced Materials

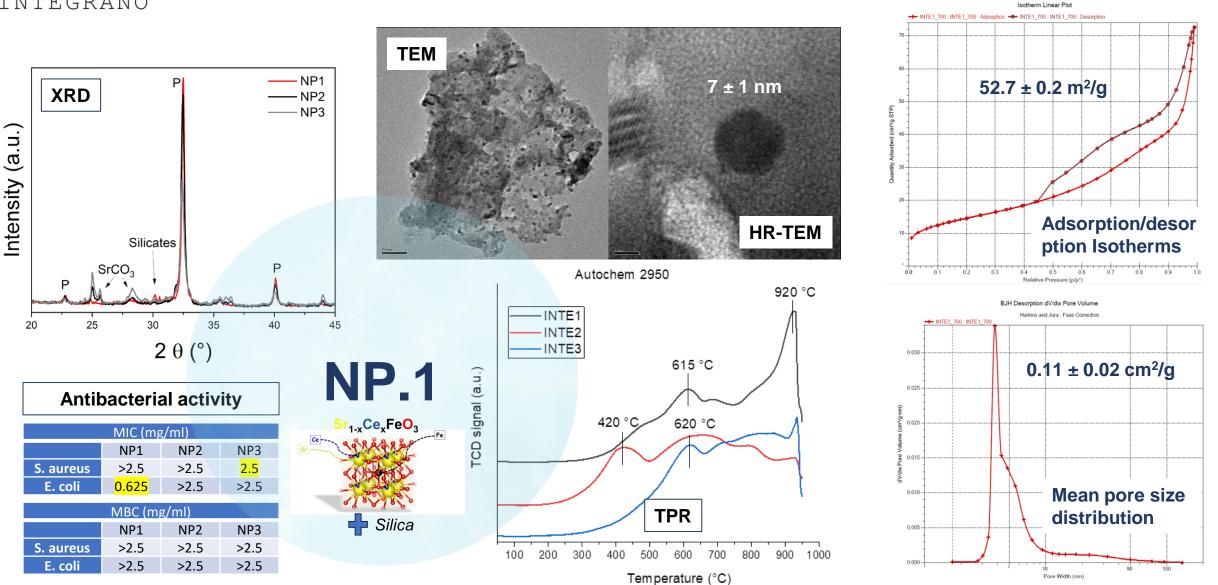

INTEGRANO 12M General Assembly 29-30/01/2025 - Turin


Which nanomaterials in CS2?

General Scope: More sustainable production of functional coatings onto SiC membranes for wastewater treatment

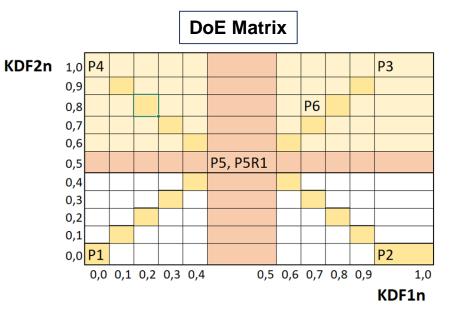
INTEGRANO

CS2 status

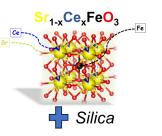


First optimization campaign

CNR-ISMN

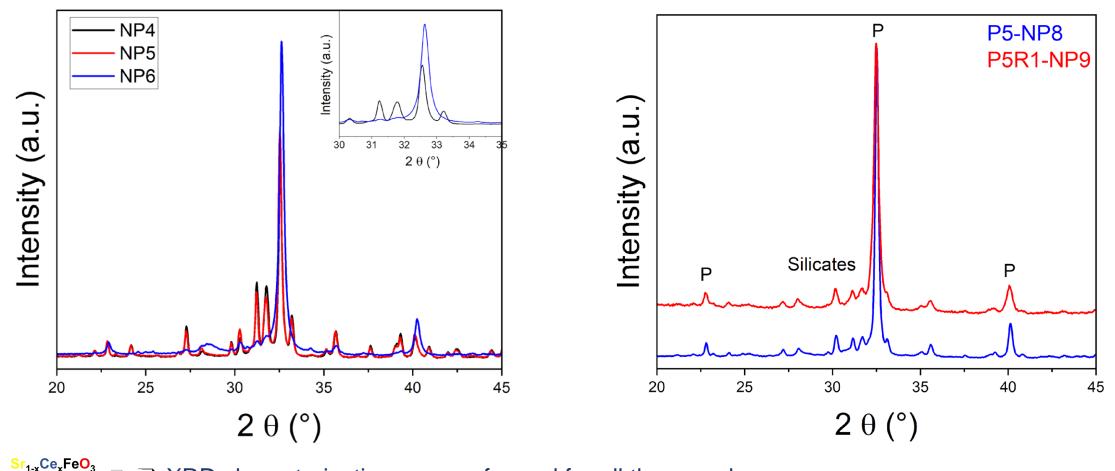


Second optimization campaign


CNR-ISMN

		рН	Phi (red:ox)			
Sample ID		KDF1	KDF2		KDF1n	KDF2n
P1	NP4	3.00	1.00	Ρ1	0	0
P2	NP5	7.00	1.00	P2	1	0
Р3	NP6	7.00	1.50	Ρ3	1	1
P4	NP7	3.00	1.50	Ρ4	0	1
P5	NP8	5.00	1.25	P5	0.5	0.5
P5R1	NP9					
P6	NP10	5.80	1.40	P6	0.7	0.8
R1=firs	st Replica	a				

Clear differences have been noticed already in the synthesis process and in the as-burned powder appearance



Second optimization campaign

- □ XRD characterization was performed for all the samples
- Very evident differences are present among the samples regarding the crystallinity of the powders
- □ The replica is identical to the first batch

Funded by the European Union

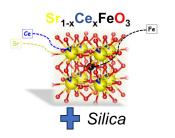
Silica

Work done so far

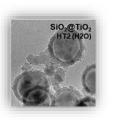
Sr_{1-x}Ce_xFeO₃

CSF-SIL Thermocatalysts

- 1. Characterization of the first 3 Nano Forms was almost completed
- 2. A best sample as a starting point for the next experiments with DoE matrix was selected
- 3. 40 g of (bio) SiO₂ for the synthesis of the new Nano Forms were prepared
- 4. 6 new Nano Forms + 1 replica according to the DoE matrix created by Project Hub were prepared
- 5. 1 Nano Form without silica was also prepared as a reference
- 6. XRD characterization was completed
- 7. Distribution of the 7 Nano Forms among the partners for the characterization campaign was organized


(bio)-SiO₂@TiO₂ Antibacterials

- 1. Characterization of the (bio)-SiO₂ Nano Forms was almost completed
- 2. Synthesis of the first (bio) SiO₂@TiO₂ Nano Forms was performed



CSF-SIL Thermocatalysts

- SEM-EDX and thermocatalytic tests of the in batch mode of the first 10 Nano Forms (B4C)
- TEM and antibacterial tests of the new Nano Forms (BIU)
- Synthesis of a replica of four Nano Forms (CNR-ISMN) and delivery to UNIMIB for Ecotoxicological characterization
- TPR and N₂ adsorption characterization of the new Nano Forms (CNR-ISMN)
- Selection of the best Nano Form/s (All)
- Synthesis of a replica of the best Nano Form (CNR-ISMN) and delivery to CNR-ISSMC for leaching tests

(bio)-SiO₂@TiO₂ Antibacterials

- N₂ adsorption characterization
- Selection of the best experimental conditions for the Nano Form
- Sinthesis of a replica for the incorporation step

CNR-IPCB and **SCITEC**

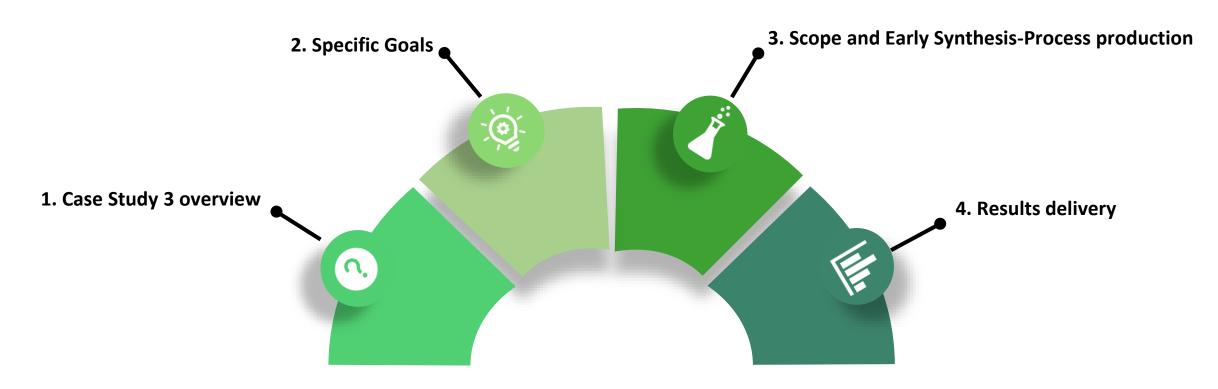
MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

Case Study n°3

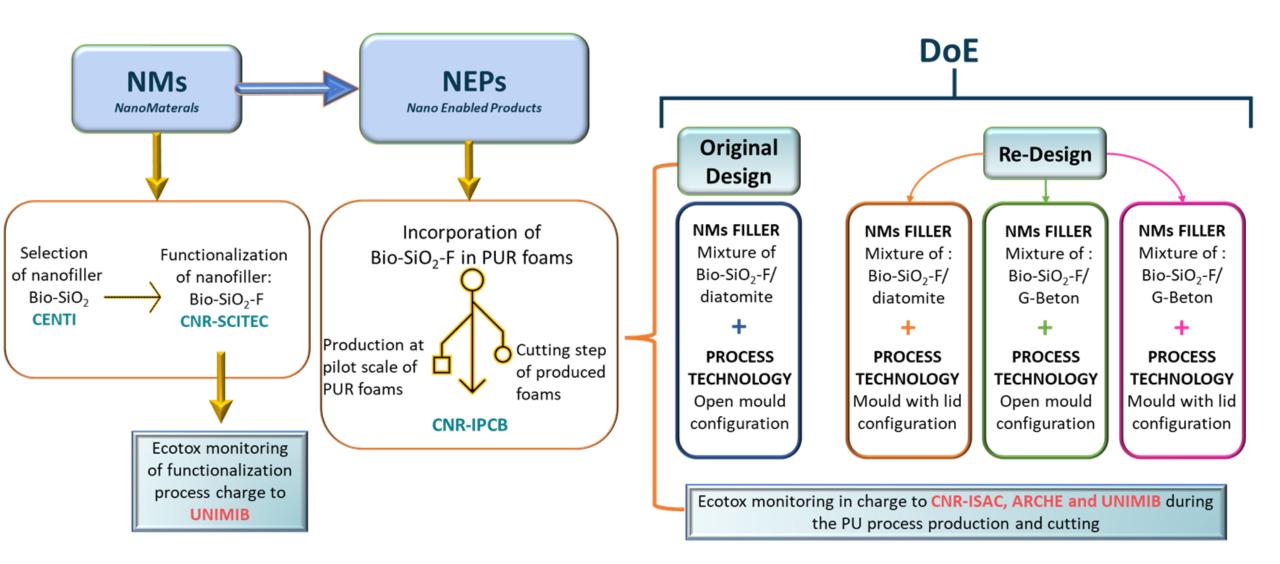
Bio-Based nanocomposite PU foam

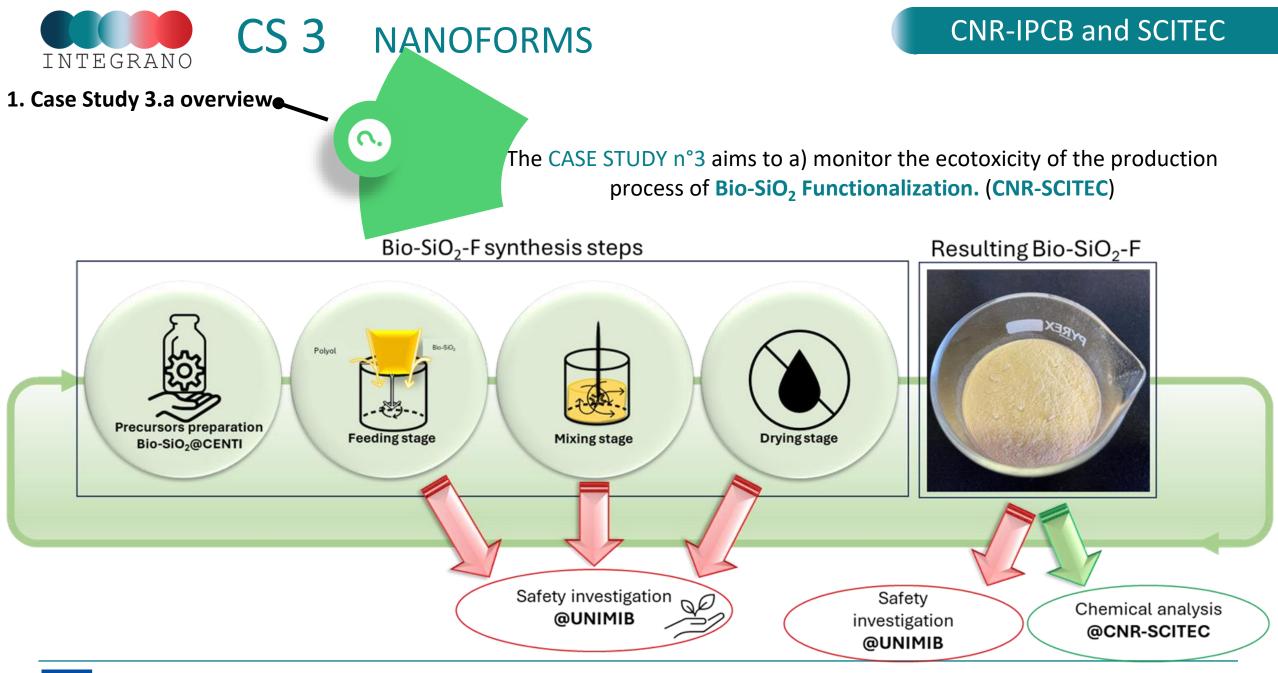
Letizia Verdolotti, Laura Boggioni

Partners involved

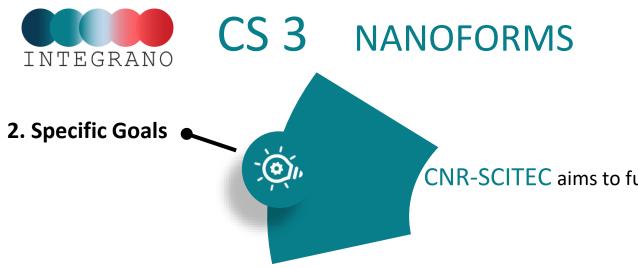


CASE STUDY n°3 outline





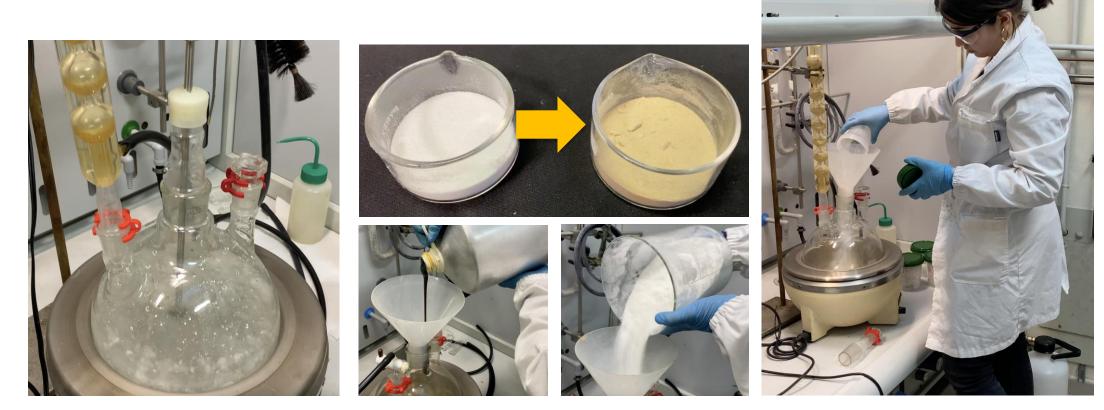
Bio-BASED PU FOAM -NEPs

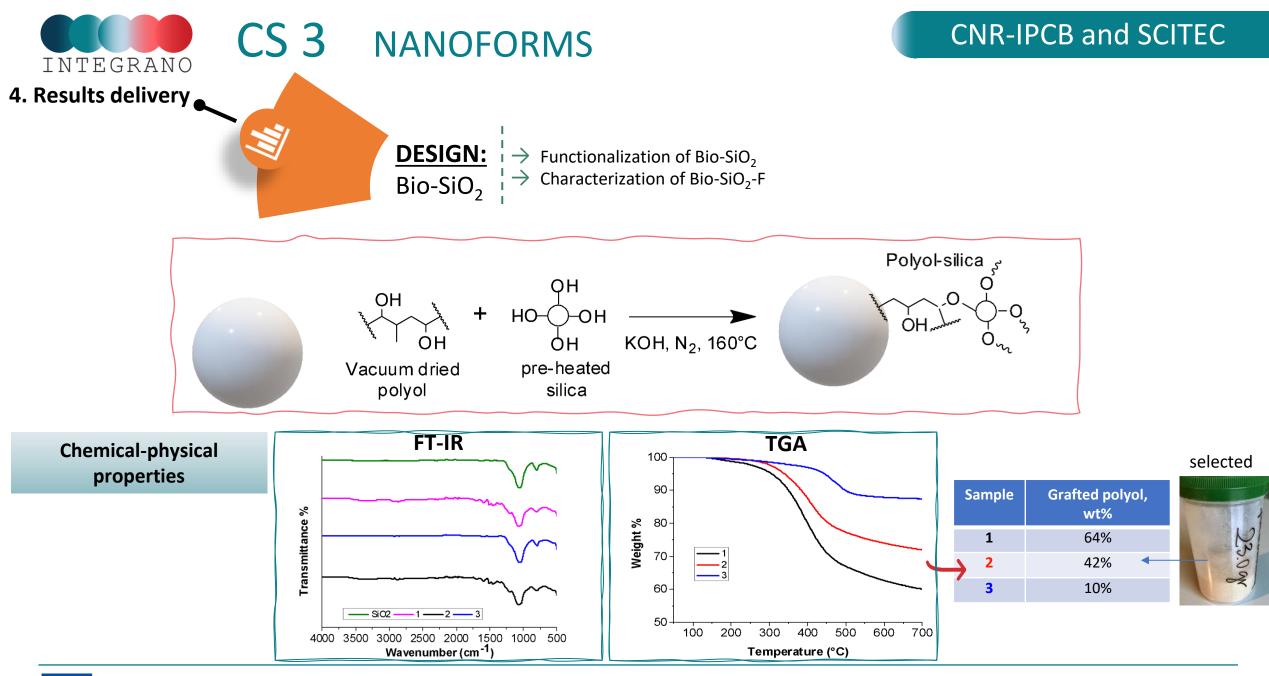


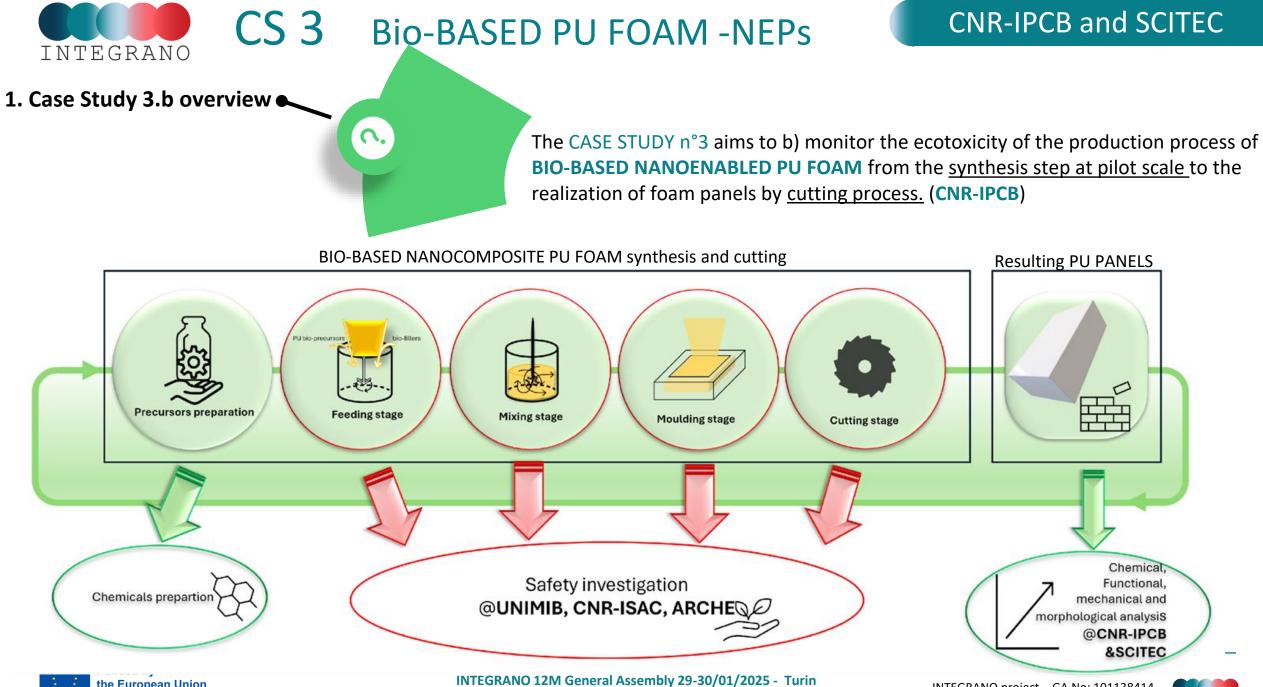
Funded by the European Union

CNR-SCITEC aims to functionalize&characterize bio-SiO₂ nanofillers @CENTI

				KDFs				
List of reagents	ist of reagents PROCESS PRODUCTION STEPS				Design	Characterization	Partners involved	
Bio-SiO ₂	Davia a 1	Waishing 2				Production of		
Polyol	Drying 1	Weighing 2	Addition&Mixing	Grafting	Drying	functionalized Bio-SiO ₂ with	•TGA	CNR-SCITEC CNR-IPCB
Potassium hydroxide (KOH)	We	ighing 2	Step 3	reaction 4	5	polyol: T, SiO ₂ /polyol ratio, reaction time	•FTIR •Ecotoxicty	UNIMIB CNR-ISAC CENTI




3. Scope and Early Synthesis-Process production


Bio-SiO₂-F functionalization

the European Union

CS 3

Bio-BASED PU FOAM -NEPs

CNR-IPCB and SCITEC

2. Specific Goals

CNR-IPCB aims to synthesize&characterize Nanocomposisite Polyurethane Foams

			KDFs						
List of reagents		PROC	CESS PROD	UCTION ST	EPS		End-of-life		
Castor oil	Mixing								
n-pentane (blowing agent)	step 1	Addion&Mixing	Mixing	Mixing		PAN			
Mixture of dual fillers (5wt%): Bio-SiO ₂ -F*+ sustainable filler ^{&}	Weighing 1	step 2	step 3	Mixing step 4	Polymerization /Foaming step	Cutting step	Existing solution: Chemical and mechanical recycling		
Bio-based Polyol/additives ^{\$}	We	eighing 2					recycling		
Isocyanate-MDI		Weighing 3				2			
→	OPEN MOULD or MOULD with Lid								

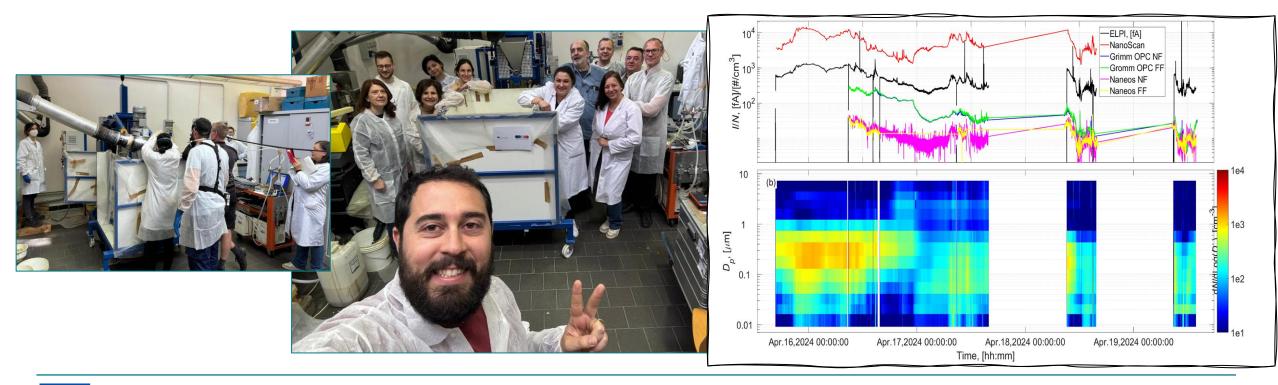
^{\$}Catalysts/Silicone surfactants/H₂O; *BioSilica@CENTI functionalized by SCITEC; [&] GasBeton or Diatomite

		CS 3 Bio-BA	SED PU FOAM -N	EPs CNF	R-IPCB and SCITEC
		ANO d Early Synthesis-Process production	***	<u>ORIGINAL DESIGN:</u> Nanocomposite PU foa Bio-SiO ₂ -F + D	ams & Piatomite/OP ([1], [2], [3]
KD	Fs	List of process production steps	Design	Characterizations	Partners involved
OPEN MOULD-OP	Fillers: Bio-SiO2-F + DIATOMITE	Mixing step 1 Weighing 1 Mixing step 2 Weighing 2 Mixing step 3 Weighing 3 Mixing step 4	Production of PU batches @defined quantities, process and rheological parameters: T, mixing time, humidity, volume to produce.	Rheological, Ecotoxicity	CNR-IPCB, CNR- SCITEC, CNR ISAC, UNIMIB, ARCHE
		CUTTING PANELS	Production of PU panels @defined shape: 65x63x5cm ³	Chemico-physical, morphological, mechanical and functional. Ecotoxicity	

		CS 3 Bio-BA	SED PU FOAM -N	EPs CNF	R-IPCB and SCITEC
		ANO d Early Synthesis-Process production		<u>RE-DESIGN:</u> Nanocomposite PU foa <mark>Bio-SiO₂-F + Diatomite</mark>	
KD	Fs	List of process production steps	Design	Characterizations	Partners involved
MOULD with LID-LID	Fillers: Bio-SiO ₂ -F + DIATOMITE	Mixing step 1 Weighing 1 Mixing step 2 Weighing 2 Mixing step 3 Weighing 3 Mixing step 4	Production of PU batches @defined quantities, process and rheological parameters: T, mixing time, humidity, volume to produce.	Rheological, Ecotoxicity	CNR-IPCB, CNR- SCITEC, CNR ISAC, UNIMIB, ARCHE
		CUTTING PANELS	Production of PU panels @defined shape: 65x63x5cm ³	Chemico-physical, morphological, mechanical and functional. Ecotoxicity	

	CD	CS 3 Bio-BA	SED PU FOAM -N	EPs CNF	R-IPCB and SCITEC
		ANO I Early Synthesis-Process production		<u>RE-DESIGN:</u> Nanocomposite PU foa Bio-SiO ₂ -F + GB/OP ([4	
KD	Fs	List of process production steps	Design	Characterizations	Partners involved
	F	Mixing step 1			
9	ers: I	Weighing 1			
OPEN MOULD-OP	Fillers: Bio-SiO ₂ -F	Mixing step 2	Production of PU batches @defined quantities,		
MOU	0 ₂ -F	Weighing 2	process and rheological	Rheological, Ecotoxicity	CNR-IPCB, CNR-
ID-0	+ GA	Mixing step 3	parameters: T, mixing time, humidity, volume to produce.		SCITEC, CNR ISAC,
P	GASBETON	Weighing 3	"		UNIMIB, ARCHE
	DZ	Mixing step 4			
		CUTTING PANELS	Production of PU panels @defined shape: 65x63x5cm ³	Chemico-physical, morphological, mechanical and functional. Ecotoxicity	

		CS 3 Bio-BA	SED PU FOAM -N	EPs CNF	R-IPCB and SCITEC
		ANO d Early Synthesis-Process production		<u>RE-DESIGN:</u> Nanocomposite PU foa <mark>Bio-SiO₂-F + GB/LID ([7</mark>	
KC)Fs	List of process production steps	Design	Characterizations	Partners involved
z	Fillers:	Mixing step 1 Weighing 1			
MOULD with LID-LID	s: Bio-SiO ₂ -F	Mixing step 2	Production of PU batches @defined quantities,		
with	O ₂ -F	Weighing 2	process, and rheological	Rheological, Ecotoxicity	CNR-IPCB, CNR-
LID	+ GA	Mixing step 3	parameters: T, mixing time, humidity, volume to produce.		SCITEC, CNR ISAC,
Ē	GASBETON	Weighing 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UNIMIB, ARCHE
	N	Mixing step 4			
		CUTTING PANELS	Production of PU panels @defined shape: 65x63x5cm ³	Chemico-physical, morphological, mechanical and functional. Ecotoxicity	



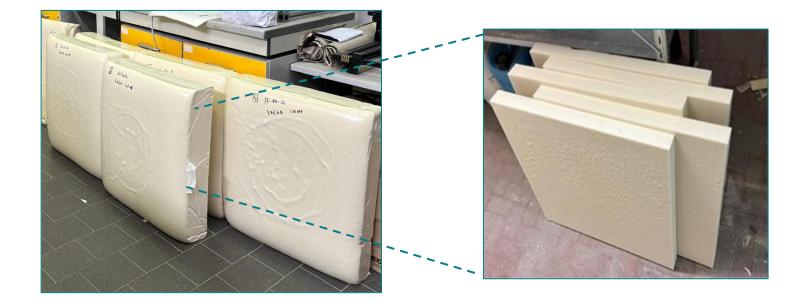
Bio-BASED PU FOAM -NEPs

DESIGN and RE-DESIGN ///

Joint Campaign CNR-IPCB, CNR-SCITEC, CNR ISAC, UNIMIB, ARCHE

CS 3

Bio-BASED PU FOAM -NEPs


CNR-IPCB and SCITEC

4. Results delivery

DESIGN & RE-DESIGN:

Nanocomposite PU foams characterizations

- \rightarrow Rheological \rightarrow Chemico-physical \rightarrow Morphological \rightarrow Mechanical
- \rightarrow functional

Evaluation of the effect of design and re-design on final properties of Nanocomposite PU foams

Bio-BASED PU FOAM -NEPs

4. Results delivery

PROCESS TECHNOLOGY	NEPs	MECH	ANICAL PROPE	RTIES	FUNCTIONAL PROPERTIES
		ρ (kg/m ₃)	σ (MPa)	E(MPa)	λ (W/mk)
	Bio-SiO ₂ -F + D /OP [1]	114.35 ± 0.01	0.98 ± 0,05	18.91 ± 0.41	0.034
Open Mould	[2]	107.33 ± 0.58	0.95 ± 0,04	21.20 ± 6.15	0.034
[Day 1]	[3]	108.00 ± 1.00	0.98 ± 0,02	26.06 ± 1.46	0.034
	Average	109.9 ± 3.87	0.97 ± 0,02	22.06 ±3.65	0.034
	Bio-SiO ₂ -F + D /LID [10]	95.67 ± 1.15	0.87 ± 0.12	18.62 ± 3.73	0.034
Mould with LID	[11]	107.33 ± 1.15	0.91 ± 0.01	22.92 ± 2,58	0.034
[Day 4]	[12]	110.33 ± 0.58	0.96 ± 0.07	21.86 ± 3.75	0.034
	Average	104.44 ± 7.75	0.91 ± 0.04	21.14 ± 2.4	0.034

INTEGRANO project – GA No: 101138414

Bio-BASED PU FOAM -NEPs

4. Results delivery

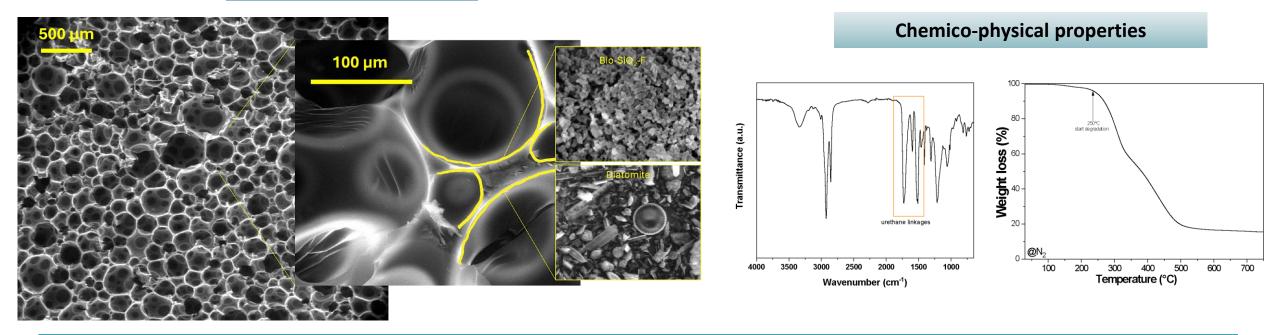
Nanocomposite PU foams characterizations :

PROCESS TECHNOLOGY	NEPs	MECH/	NICAL PROPE	RTIES	FUNCTIONAL PROPERTIES
		ρ (kg/m ₃)	σ (MPa)	E(MPa)	λ (W/mk)
	Bio-SiO ₂ -F + GB /OP [4]	103.00 ± 1.00	0.86 ± 0.02	22.85 ± 1.59	0.034
Open Mould	[5]	104.33 ± 1.15	0.88 ± 0.05	29.57 ± 1.05	0.034
[Day 2]	[6]	100.67 ± 0.58	0.84 ± 0.02	21.26 ± 1.78	0.034
	Average	102.67 ± 1.86	0.86 ± 0.03	24.56 ± 4.41	0.034
	Bio-SiO ₂ -F + GB /LID [7]	103.67 ± 0.58	0.82 ± 0.03	20.04 ± 3.98	0.034
Mould with LID	[8]	101.33 ± 0.50	0.84 ± 0.01	22.65 ± 1.02	0.034
[Day 4]	[9]	103.50 ± 1.12	0.81 ± 0.02	20.58 ± 2.35	0.034
	Average	103.50 ± 2.09	0.82 ± 0.02	21.09 ± 1.38	0.034

Bio-BASED PU FOAM -NEPs

CNR-IPCB and **SCITEC**

4. Results delivery


ORIGINAL DESIGN:

Nanocomposite PU foams & **Bio-SiO₂-F + Diatomite/OP**

Bio-SiO ₂ -F + D /OP [1]	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \end{array}$ Chemico-physical
[2]	\rightarrow Morphological \rightarrow Mechanical
[3]	\rightarrow functional

Morphological properties

CS 3

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

CASE STUDY N.4

Air Filter Media

Annual General Meeting 29th - 30th January 2025 Turin - Italy

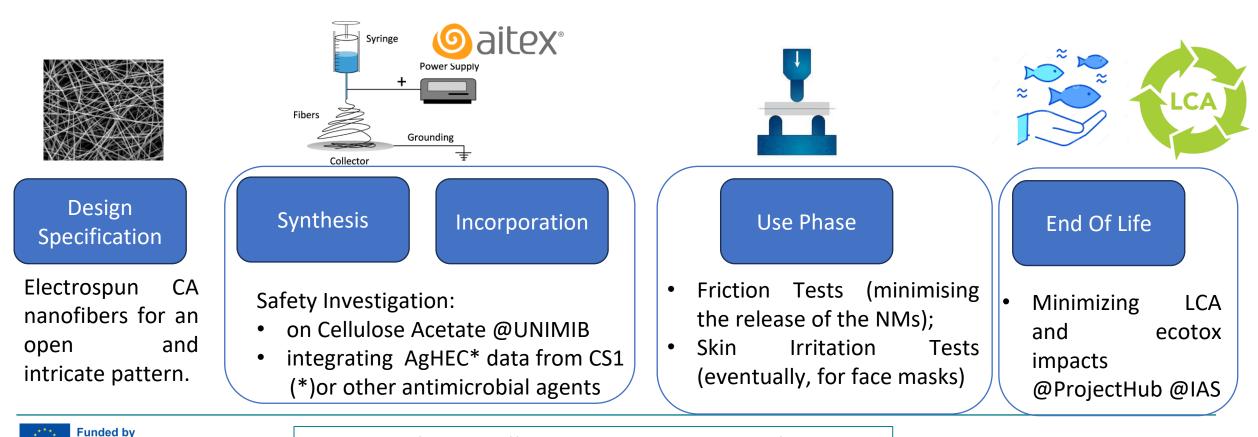
This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414

Air Filters

- Air filters devices are designed to remove airborne contaminants, including particles, pollutants, and microorganisms, in applications such as medical face mask, HVAC systems, cabin air car and others.
- The air filter media must have a porous and intricate structure, to allow the passage of air and at the same time collect airborne particles.
- The most common categories are pleated (e.g HVAC) and electret (e.g. face mask) often made in fiberglass/nylon and having poor biodegradability.
- After Covid, the production of filters increases, but they are often not discarded properly and end up polluting the oceans.

There is an increasing need for:

- i) sustainable alternatives to poorly biodegradable air filters
- ii) functionalised with antimicrobial agents



Maximize filtration Efficiency and Quality Factor performance

SCOPE AND GOAL:

the European Union

Sustainable air Filter in Cellulose Acetate Functionalized with Antimicrobial Agent (e.g. AgHec, ZnO, EB)

Egyptian Blue (micro-EB) optimization

Adjustment of the synthesis, initially for EB in micrometric size (then transferable to nanometric and/or bio-based material).

determine the best combination for a "lower energy"

consumption" strategy and good quality.

 $CaCuSi_4O_{10}$

UNITO, CNR-ISAC

GOAL: adjustment of the synthesis for the micrometric EB.

KDF 1	Heating Cycle Discrete (hours)	32/48/64 hours	PRJECT
KDF 2	Rinsing Cycle Discrete (Yes or No)	washed or unwashed	HUB360

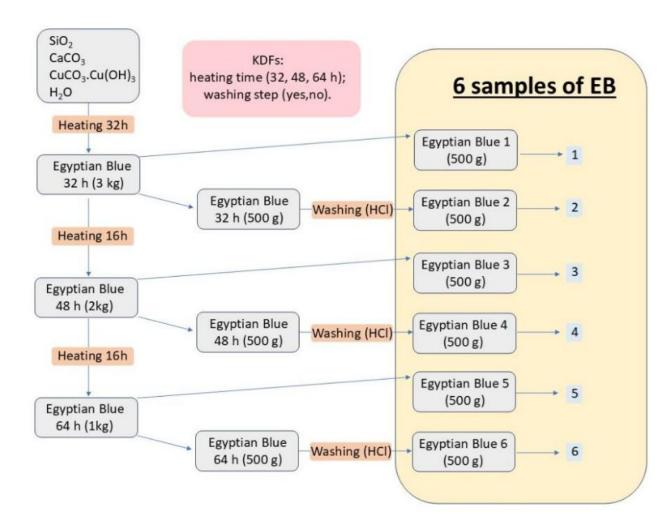
Six different EB micropowders samples

#	Sample	Sample legend
	name	
1	I2A	Second firing
2	I2B	Second firing + washing + annealing (900 °C for
		4 hours)
3	I3A	Third firing
4	I3B	Third firing + washing + annealing (900 °C for 4
		hours)
5	I4A	Fourth firing
6	I4B	Fourth firing + washing + annealing (900 °C for
		4 hours)

KDFs

Scope:

Funded by the European Union



Egyptian Blue (micro-EB) optimization

UNITO, CNR-ISAC

MIC (mg/ml)						
	EB1	EB2	EB3	EB4	EB5	EB6
S. aureus	>10	>10	>10	>10	>10	>10
E. coli	>10	5	10	>10	>10	>10

Minimum Inhibition Concentration against S.Aureus and E.Coli

MBC (mg/ml)							
	EB1	EB2	EB3	EB4	EB5	EB6	
S. aureus	>10	>10	>10	>10	>10	>10	
E. coli	>10	>10	>10	>10	>10	>10	

Minimum Bactericidal Concentration against S.Aureus and E.Coli

SSbD case based on stakeholders selection

Notes

Identification of KDF for micro-EB powders :

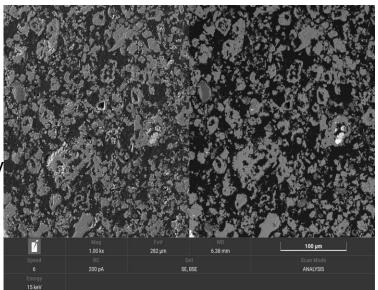
data on energy consumption and synthesis collected by ProjectHub

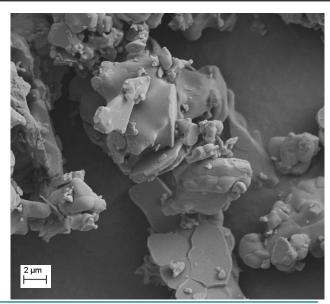
Optimization of the synthesis for micro-EB powders:

- Six different samples made and fully characterized (SEM, Z-Potential, antimicrobial activity
- DOE performed by ProjectHub to indicate the best sample
- Information available to proceed with the nanometric and/or bio-based material.

Considerations

Nano-EB will be further developed inside CS1 considering that:


- no effect found on VOC removal
- bulk EB material not efficient enough as air filter
- micro EB : too large amount required (possible clogging for air filter
- nano EB: at developing stage, much time for incorporation into air filter


Egyptian Blue (nano-EB) optimization

Target Functionality for optimization: luminescence and/or antimicrobial. Possible KDF for optimizing nanoEB can be the quantity of dispersant used.

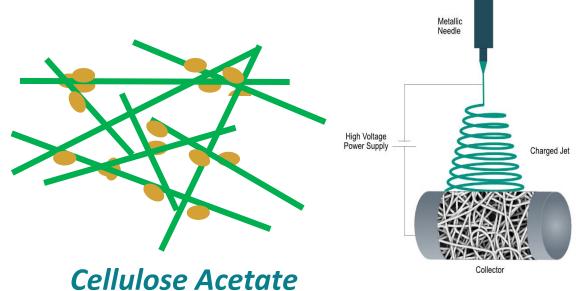
UNITO, CNR-

AITEX, CNR-ISAC

Case Study 4.2

From now on we will only refer to this as CS 4

? Synthesis


• Adjustment of the precursor polymer solutions

Incorporation

- Inclusion of AgHEC to the spinning solution
- Electrospinning of Cellulose Acetate with and without AgHEC (or another antimicrobial agent as ZnO).

MAIN GOALS

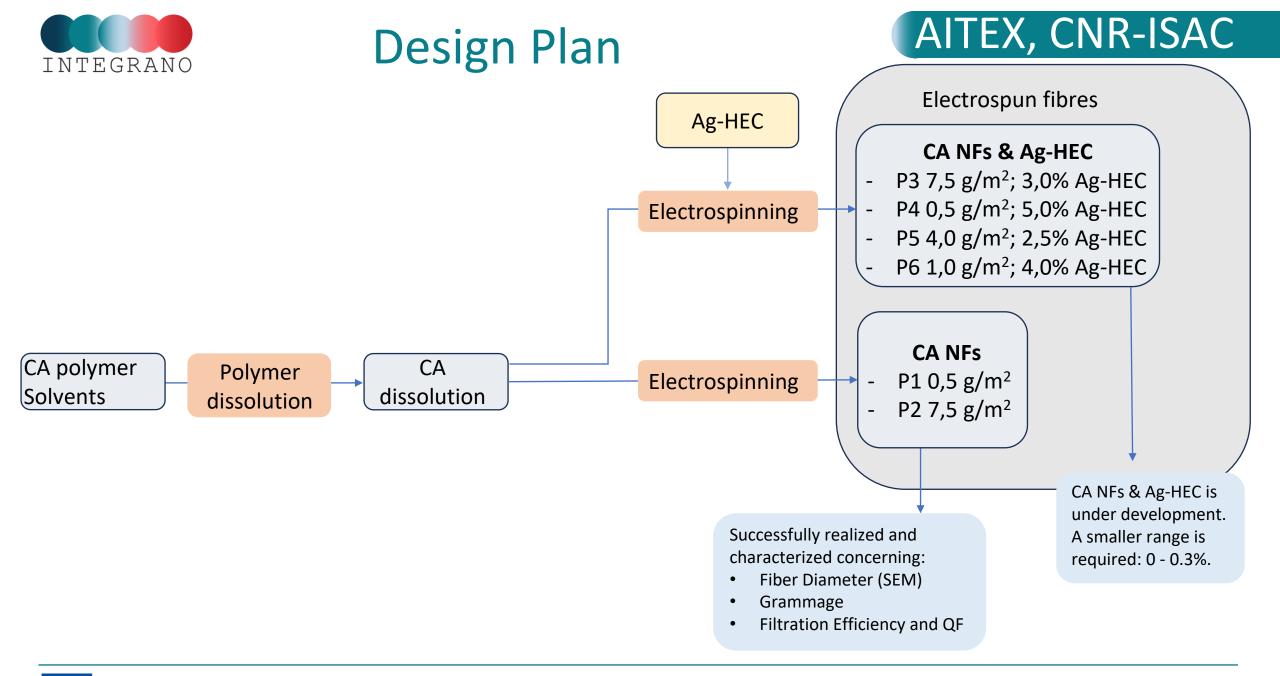
- High Efficiency and Quality Factor 2 determined by grammage (KDF1)
- Antimicrobial effects
 ² amount of antimicrobial agent(KDF2)

& Antimicrobial Agent

Electrospinning

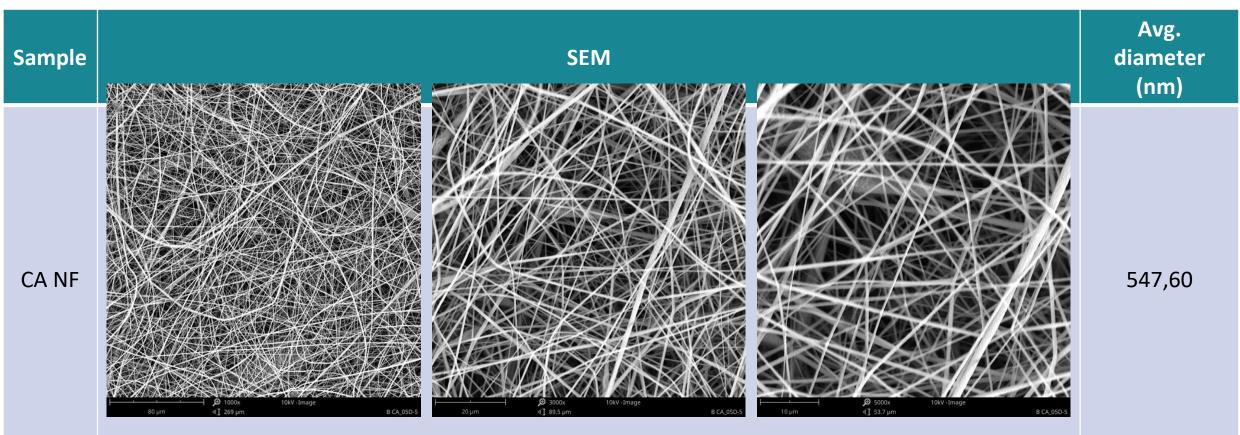
KDFs

1		Membrane Grammage (g/m ²)	from 0.5 to 7.5 g/m ²	PROJECT
ł	KDF 2	Amount of antimicrobial agent (% in weight of the concentration)	From 0% to 5% From 0% to 0.3%	HUB360


Antimicrobial Agent:

- **AgHEC nanoparticles** from ISSMC (largely studied in past projects and already available); -
- Egyptian Blue from UNITO (discarded, as explained before); -
- ZnO from BIU, possibility to evaluate sonochemical incorporation. -

A total amount of **6 (up to 10) different samples** to be characterised with AgHEC (*) as antimicrobial agent.



Polymer Nanofibers

Characterization

SEM-EDS

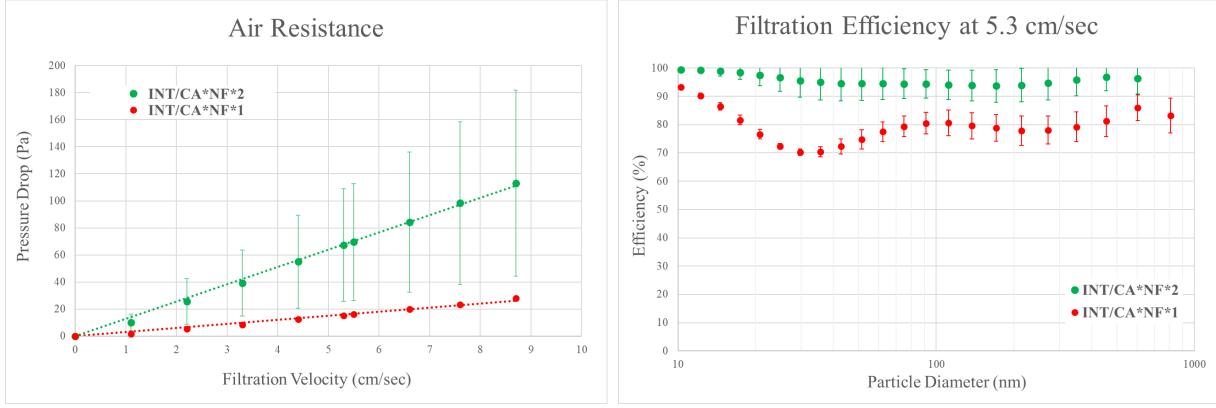
Polymer Nanofibers Characterization

GRAMMAGE

Sample	Sampling area	GRAMMAGE (g/m²)	Avg. grammag e (g/m ²)	Sample	Sampling area	GRAMMAGE (g/m²)	Avg. grammag e (g/m ²)
	1 (left +3)	0,0	0,34	CA NF_2	1 (left +3)	1,5	4,15
	2 (left +2)	0,1			2 (left +2)	3,2	
	3 (left +1)	0,5			3 (left +1)	5,1	
CA NF_1	4 (center)	0,5			4 (center)	6,8	
	5 (right +1)	0,3			5 (right +1)	5,4	
	6 (right +2)	0,3			6 (right +2)	2,9	
	7 (right +3)	0,0			7 (right +3)	0,8	

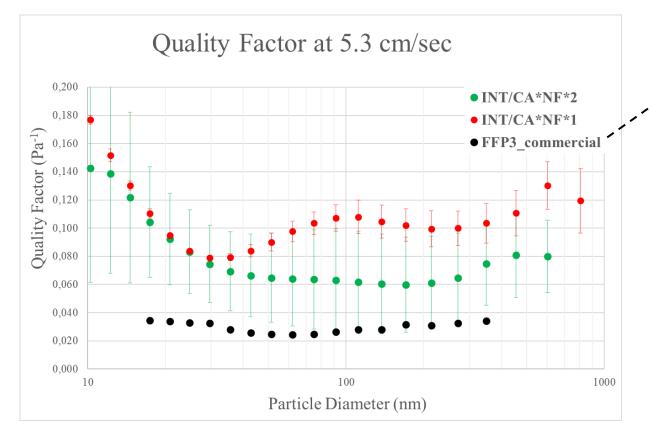
Polymer Nanofibers

Characterization


THICKNESS

Sample	THICKNESS (μm)	
CA NF_2	1,63	

Pressure Drop and Filtration Efficiency Test Functionality


Test similar to EN149 standard

Quality Factor Functionality

Comparing to a commercial FFP3, both membranes exhibit an exceptionally high quality factor, indicating that the electrospun cellulose acetate is a promising air filter that effectively removes particles while ensuring good breathability.

CNR-ISAC

Work planned for the NEXT 6 MONTHS

Optimisation of the Electrospinning of CA NF & Ag-HEC

- KDF: AgHEC concentration, grammage of electrospun membrane
- KPI: quality factor, antibacterial properties, safety and ecotox tests

Tentative Optimisation of the ZnO incorporation

- KDF: ZnO concentration, grammage of electrospun membrane
- KPI: quality factor, antibacterial properties, safety

Depending on the results obtained, we will have a **better focus on the application** (as HVAC or face masks) **and further develop of KPI associated to the use phase** as:

- KPI: friction testing
- KPI: skin irritation testing

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

Case Study 5

Food packaging

12M Annual General Meeting

Turin - Italy 29-30 January 2025

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414

CS5 Food packaging

SCOPE, GOAL

Scope – Developing a new food packaging (Cdots) to elongate the fresh produce shelf-life.

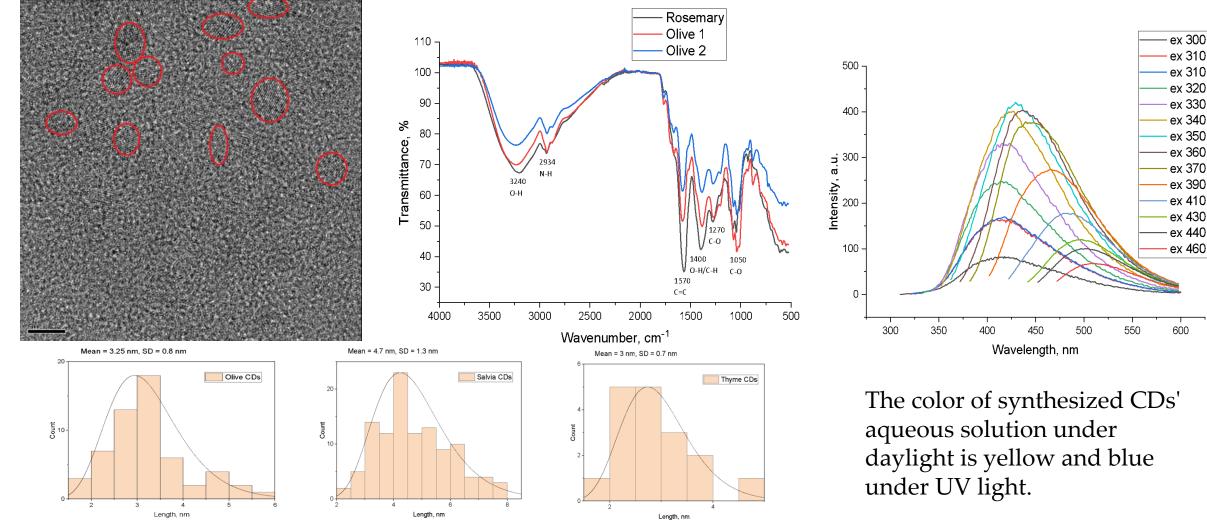
Goals

- Synthesis of fluorescent Carbon dots with antibacterial properties using Olive, Rosemary, Aloe Vera, Thyme, and Salvia Leaves as precursors

- Optimization of coating of PE/paper with synthesized C-dots. KDF1: precursor concentration, KDF2: reaction time. KPIs for this study are coating concentration and antibacterial properties.

CS5 Food packaging

C-dots synthesis


#	Sample source	Sample weight for synthesis, g	Water volume, ml	т, °С	Time, hours	Fluorescence, λ _{max} , color	MIC, mg/ml	Number experiments	Size, nm (TEM)
1	Rosemary leaves fresh	2	25	180	10	~450 nm, blue	2,5 (S.aureus)	2	3.5 ± 1.5
2	Olive leaves dried at 60°C for 48 hours	6	60	180	12		0,625 (S.aureus)	4	3.2 ± 0.8
3	Aloe Vera leaves dried at 60°C for 48 hours	6	60	180	12		-	2	4 ± 1.5
4	Salvia leaves dry	6	60	180	12		1,25 (S.aureus)	1	4.7 ± 1.3
5	Thyme leaves dried at 60°C for 48 hours	5,5	55	180	12		0,625 (S.aureus)	1	3 ± 0.7
6	Rosemary leaves dried at 60°C for 48 hours	6	60	180	12		0,625 (S.aureus)	1	~4

INTEGRANO

CS5 Food packaging

Antibacterial properties

Bacteria tested

All samples were tested against *Staphylococcus aureus, Listeria innocua, Escherichia coli, P. aeruginosa,* Methicillin-resistant *Staphylococcus aureus* (MRSA), *E. coli* MDR, *Klebsiella pneumoniae* MDR.

Olive	Salvia				Rosemary			Thyme			
	MIC (mg/ml)	MBC (mg/ml)		MIC (mg/ml)	MBC (mg/ml)		MIC (mg/ml)	MBC (mg/ml)		MIC (mg/ml)	MBC (mg/ml)
S. aureus	0.625	2.5	S. aureus	1.25	2.5	S. aureus	0.625	2.5	S. aureus	0.625	2.5
L. innocua	1.25	2.5		Was not	Was not	L. innocua	1.25	5	L. innocua	Was not tested	Was not tested
E. coli	5	10	L. innocua	tested	tested						
P. aeruginosa	5	10	E. coli	10	10	E. coli	10	10	E. coli	10	10
MRSA	0.625	2.5	P. aeruginosa	5	10	P. aeruginosa	5	10	P. aeruginosa	10 0.625	10
			MRSA	1.25	2.5	MRSA	0.625	1.25	MRSA		1.25
E. coli MDR	20	20				E. coli MDR	20	20	E. coli MDR	10	20
K. pneumoniae			E. coli MDR	20	20	K. pneumoniae			K. pneumoniae		
MDR	10	20	K. pneumoniae MDR	10	20	MDR	10	20	MDR	10	20

Work planned for the NEXT 6 MONTHS

- Optimization of coating of PE/paper with synthesized C-dots. KDF1: precursor concentration, KDF2: reaction time.

KPIs for this study are coating concentration and antibacterial properties.

MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

CASE STUDY 6

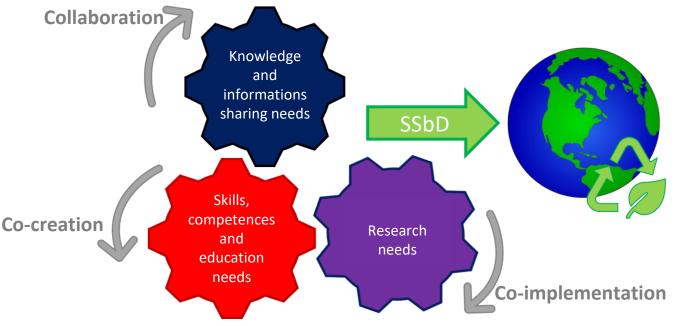
Advanced sunscreen and anti-aging formulations

ROV / VERL

12M Annual General Meeting Turin - Italy

29-30 January 2025

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414


Introduction to the case study

Case study 6 focuses on the development of **advanced sunscreen and anti-aging formulations** designed for the European market.

The main goal is the application of a Safe and Sustainable by Design (SSbD) method for the optimization of prototypes.

The key benefit is the balance between:

- high performance;
- improved safety;
- environmental sustainability.

Introduction to the case study

Our formulation will focus on the **development of three prototypes** that will be subjected to optimization:

Product	Anti UV functionality	Anti Aging functionality	Notes
Actual standard	Titanium Dioxide Nano already available on the market and commonly used in cosmetic preparations - supplied by ROV.	Anti-aging active (Vit C derivative) supplied by ROV.	ROV will incorporate Titanium Dioxide and anti- aging in the cosmetic base.
Tier 1	SiO2@TiO2 by Centi.	Anti-aging active (Vit C derivative) supplied by ROV.	ROV will incorporate SiO2@TiO2 by Centi and anti-aging in the cosmetic base
Tier 2	Micropellet provided by VERL with SiO2@TiO2 by Centi and anti-aging active provided by VERL.	Micropellet provided by VERL with SiO2@TiO2 by Centi and anti-aging active provided by VERL (Vit C derivative)	ROV will incorporate micropellet (NPs+ Vit C) from VERL into the cosmetic base.

Functionality and safety goals

Our goals:

Enhanced sun protection

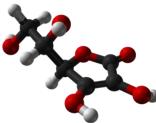
To demonstrate that the combination of nanoparticles (NPs) and organic UV filters offers superior UV absorption, minimizing white cast and ensuring a pleasant sensoriality.

Reduction of oxidative radicals

To develop a formulation that helps limit oxidative stress on the skin.

Vitamin C stability

Thanks to micro-pelletization, to demonstrate improved bioactivity and stability of Vitamin C compared to conventional products.


Reduction of penetration and adverse effects of nano ingredients

To ensure, through advanced formulation and characterization choices, that the nano materials used in the product have minimal skin penetration, do not cause undesirable effects, while preserving safety for the end user.

Combined anti-aging activity and Increased stability prospects

Recent updates: KPIs and KDFs

From the beginning of the project, one of the main goals was to **define KPIs and KDFS** that would allow precise and targeted monitoring of the effectiveness of the solutions developed.

- For micropellets, KDFs and KPIs were designed to evaluate aspects related to their physical structure, stability and incorporation into the final matrix.
- For nano-enabled cosmetic products, the emphasis was placed on the performance of the final product, safety and aesthetic perception.

This differentiated approach was key to ensuring an adequate and targeted assessment of each area of the case study.

KPIs and KDFs

MATERIAL	КРІ	KDF
Micropellets	 Particle size Stability of Vitamin C (monitored by VERL). Collagenase inhibition activity: Test to evaluate anti-aging efficacy (VERL). Antioxidant activity: Monitored and tested by DRT. 	 Process Temperature Excipients
Nanoenabled Products (NeP)	 Collagenase inhibition activity (VERL). Antioxidant activity: Tested by DRT. UV protection features: In vitro SPF (DRT?). 	 Percentage of nanomaterial (%NM) in the product. Oil/water ratio: Essential to optimize the emulsion.

Thanks to this selection of KDFs and KPIs, the project aims not only to develop innovative cosmetic solutions, but also to provide a strong and replicable analytical framework for the evaluation of advanced cosmetic products, ensuring the achievement of high standards of functionality and safety.

The current situation **FIRST STEP**

THE OPTIMAL W/W RANGE FOR THE INSERTION OF THE SIO2@TIO2 NP WITHIN THE FORMULATION	THE PRESENCE OF A DARK PARTICULATE MATTER IN THE SIO2@TIO2 SAMPLE
 Use of an integrated approach that cross-referenced the efficacy <u>data</u> available on nano titanium the <u>regulatory limitations</u> (limit of use of nano TiO2 at 25%) the results of <u>preliminary formulation tests</u>. 	Observation of the presence of a dark particulate matter in the SiO ₂ @TiO ₂ sample. This has led a progressive chromatic alteration of the sample , which tends to turn towards grayer shades over time.
Conduction of preliminary formulation tests by incorporating progressive amounts of nanomaterial into already established formulations.	It raises questions about the nature of the phenomenon and the potential impact on the technical performance of the final product and on its aesthetic acceptability.
It has been determined that the optimal w/w range is 2% to 10%. Above 10%, the dispersion of the SiO2@TiO2 becomes more difficult, the formulation is less homogeneous, and the application loses its pleasantness.	In this context, it might be useful to consider the introduction of an additional SiO ₂ @TiO ₂ sample purification step to reduce or eliminate dark particulate matter, a discussion with Centi is underway on this issue.

The current situation

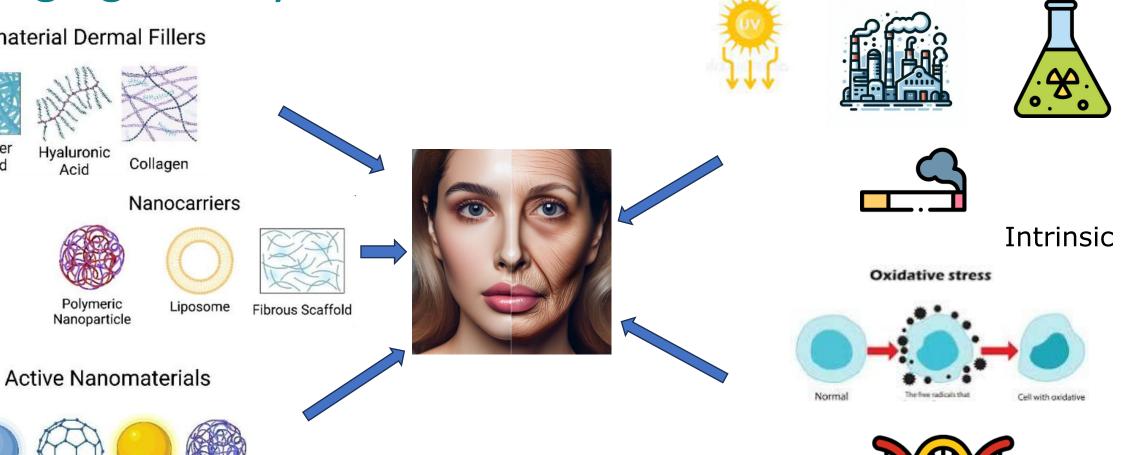
NEXT STEP

Key objectives have been identified to ensure progress in research and optimization:

Planning of antioxidant tests with Dermatest: the details of antioxidant tests will be defined with Dermatest. The goal is to meet <u>in</u> <u>mid-February.</u>

Generation of Nano-Tox and Nano Eco-Tox data: It will be essential to coordinate with the partners involved to select the most relevant analyses and identify the suitable materials to be <u>tested</u>. Exposure Assessment and Prediction Models activities: this initiative will focus on the <u>analysis and</u> modelling of exposure to <u>nanomaterials</u>, to assess their potential impact on human health and the environment.

Impact Assessment: methodologies will be developed and to examine the overall impact of nanomaterials. It will consider <u>the</u> <u>functional performance</u> <u>of the product and the</u> <u>aspects of environmental</u> <u>and social sustainability.</u>



Antiaging activity

Nanomaterial Dermal Fillers

VENUSROSES

Extrinsic

Magnetic

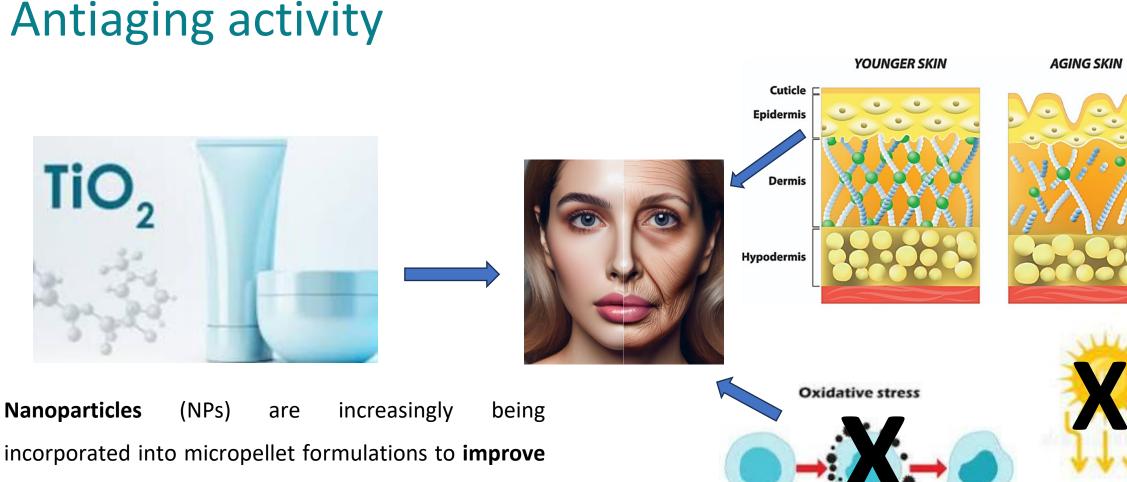
NP

Nanofiber

Scaffold

Fullerene

Gold NP Polymeric


NP

12M 29-30 January 2025, Turin

VENUSROSES

drug delivery systems (solubility, stability, and

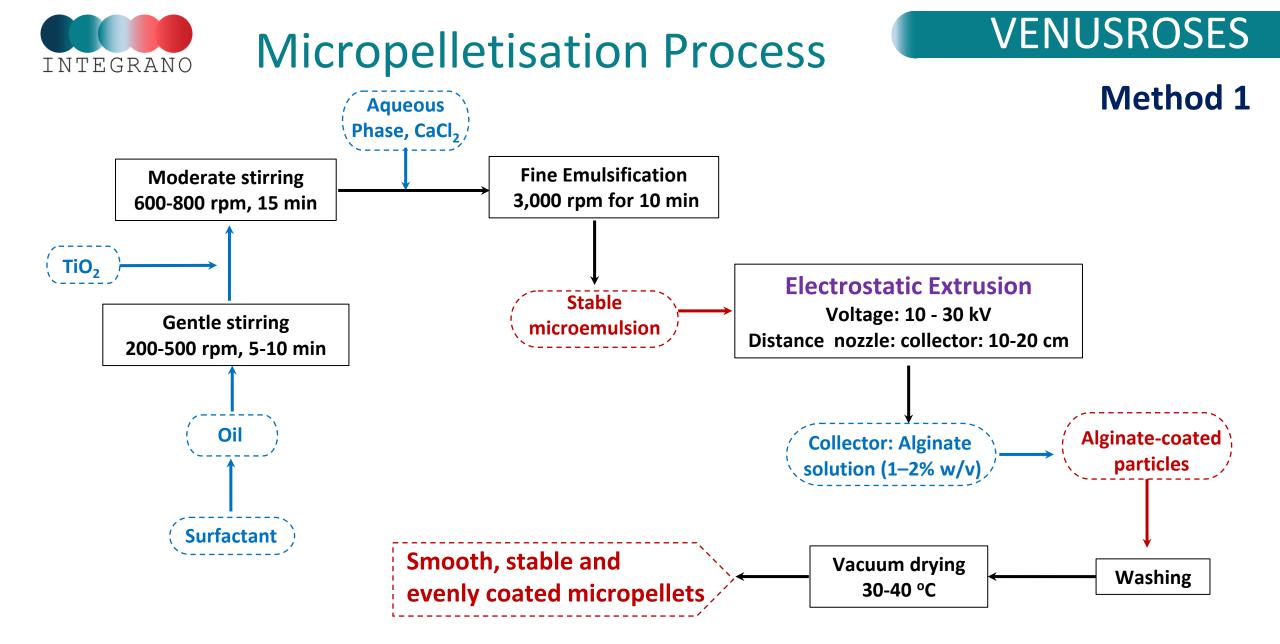
bioavailability of active pharmaceutical ingredients)

UV RADIATION

Cell with oxidative

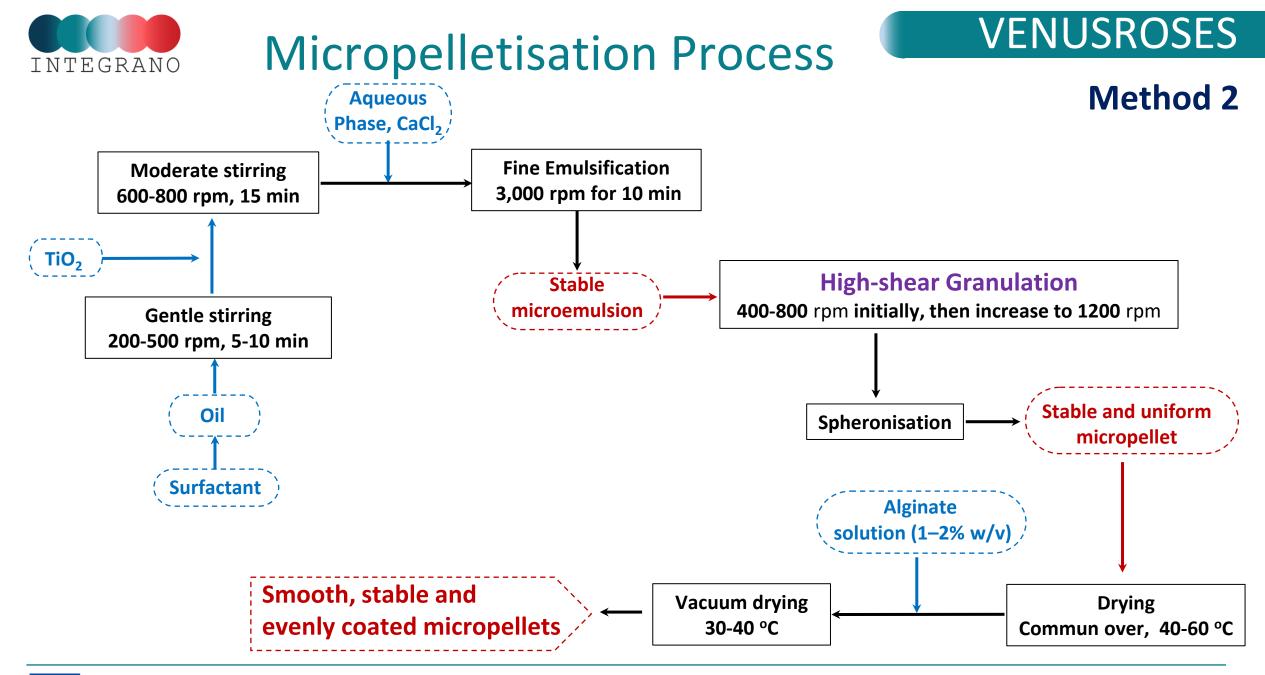
The five radicals that

Normal

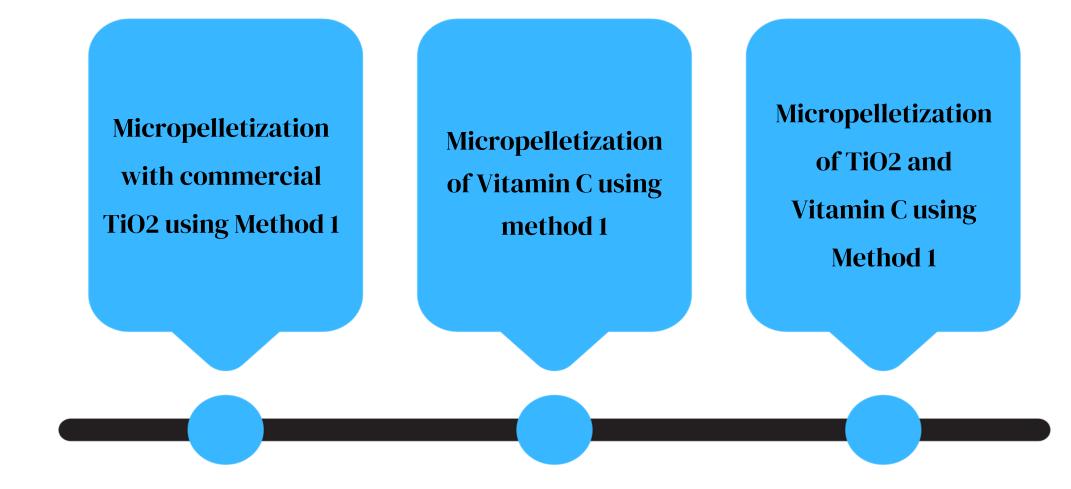


Elastin

Collagen


Fat cells

Muscles



Funded by the European Union

Work planned for the NEXT 6 MONTHS

THANK YOU FOR YOUR ATTENTION!

